Journal of High Energy Physics

, 2016:102 | Cite as

Flavour fields in steady state: stress tensor and free energy

  • Avik Banerjee
  • Arnab KunduEmail author
  • Sandipan Kundu
Open Access
Regular Article - Theoretical Physics


The dynamics of a probe brane in a given gravitational background is governed by the Dirac-Born-Infeld action. The corresponding open string metric arises naturally in studying the fluctuations on the probe. In Gauge-String duality, it is known that in the presence of a constant electric field on the worldvolume of the probe, the open string metric acquires an event horizon and therefore the fluctuation modes on the probe experience an effective temperature. In this article, we bring together various properties of such a system to a formal definition and a subsequent narration of the effective thermodynamics and the stress tensor of the corresponding flavour fields, also including a non-vanishing chemical potential. In doing so, we point out a potentially infinitely-degenerate scheme-dependence of regularizing the free energy, which nevertheless yields a universal contribution in certain cases. This universal piece appears as the coefficient of a log-divergence in free energy when a space-filling probe brane is embedded in AdS d+1-background, for d = 2, 4, and is related to conformal anomaly. For the special case of d = 2, the universal factor has a striking resemblance to the well-known heat current formula in (1 + 1)-dimensional conformal field theory in steady-state, which endows a plausible physical interpretation to it. Interestingly, we observe a vanishing conformal anomaly in d = 6.


Gauge-gravity correspondence AdS-CFT Correspondence Holography and quark-gluon plasmas Holography and condensed matter physics (AdS/CMT) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Gallavotti and E.G.D. Cohen, Dynamical Ensembles in Nonequilibrium Statistical Mechanics, Phys. Rev. Lett. 74 (1995) 2694 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    J. Kurchan, Fluctuation theorem for stochastic dynamics, J. Phys. A 31 (1998) 3719 [cond-mat/9709304].ADSMathSciNetGoogle Scholar
  3. [3]
    G. Gallavotti and E.G.D. Cohen, Dynamical Ensembles in Nonequilibrium Statistical Mechanics, Phys. Rev. Lett. 74 (1995) 2694 [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    A. Kundu and S. Kundu, Steady-state Physics, Effective Temperature Dynamics in Holography, Phys. Rev. D 91 (2015) 046004 [arXiv:1307.6607] [INSPIRE].ADSGoogle Scholar
  5. [5]
    A. Kundu, Effective Temperature in Steady-state Dynamics from Holography, JHEP 09 (2015) 042 [arXiv:1507.00818] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    D. Bernard and B. Doyon, Non-equilibrium steady-states in conformal field theory, Annales Henri Poincaré 16 (2015) 113 [arXiv:1302.3125].CrossRefADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    D. Bernard and B. Doyon, Energy flow in non-equilibrium conformal field theory, J. Phys. A 45 (2012) 362001 [arXiv:1202.0239] [INSPIRE].MathSciNetGoogle Scholar
  8. [8]
    H.-C. Chang, A. Karch and A. Yarom, An ansatz for one dimensional steady state configurations, J. Stat. Mech. 1406 (2014) P06018 [arXiv:1311.2590] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    I. Amado and A. Yarom, Black brane steady states, JHEP 10 (2015) 015 [arXiv:1501.01627] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  11. [11]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    A. Karch, A. O’Bannon and E. Thompson, The Stress-Energy Tensor of Flavor Fields from AdS/CFT, JHEP 04 (2009) 021 [arXiv:0812.3629] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    M.S. Alam, V.S. Kaplunovsky and A. Kundu, Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model, JHEP 04 (2012) 111 [arXiv:1202.3488] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    C.V. Johnson and A. Kundu, External Fields and Chiral Symmetry Breaking in the Sakai-Sugimoto Model, JHEP 12 (2008) 053 [arXiv:0803.0038] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Quarks in an external electric field in finite temperature large-N gauge theory, JHEP 08 (2008) 092 [arXiv:0709.1554] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    K.-Y. Kim, J.P. Shock and J. Tarrio, The open string membrane paradigm with external electromagnetic fields, JHEP 06 (2011) 017 [arXiv:1103.4581] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    J. Sonner and A.G. Green, Hawking Radiation and Non-equilibrium Quantum Critical Current Noise, Phys. Rev. Lett. 109 (2012) 091601 [arXiv:1203.4908] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, A Topology-changing phase transition and the dynamics of flavour, Phys. Rev. D 77 (2008) 066004 [hep-th/0605088] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Karch and A. O’Bannon, Chiral transition of N = 4 super Yang-Mills with flavor on a 3-sphere, Phys. Rev. D 74 (2006) 085033 [hep-th/0605120] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    I. Racz and R.M. Wald, Extension of space-times with Killing horizon, Class. Quant. Grav. 9 (1992) 2643 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    K. Jensen, Chiral anomalies and AdS/CMT in two dimensions, JHEP 01 (2011) 109 [arXiv:1012.4831] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    L.-Y. Hung and A. Sinha, Holographic quantum liquids in 1 + 1 dimensions, JHEP 01 (2010) 114 [arXiv:0909.3526] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    C. Fefferman and C.R. Graham, Conformal invariants, in Élie Cartan et les Mathématiques d’Aujourd’hui, Astérisque, Société mathématique de France (1985), p. 95.Google Scholar
  28. [28]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  29. [29]
    K. Skenderis, Asymptotically Anti-de Sitter space-times and their stress energy tensor, Int. J. Mod. Phys. A 16 (2001) 740 [hep-th/0010138] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Theory Division, Saha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Department of PhysicsCornell UniversityIthacaU.S.A.

Personalised recommendations