Journal of High Energy Physics

, 2016:82 | Cite as

Higher-order QCD predictions for dark matter production in mono-Z searches at the LHC

Open Access
Regular Article - Theoretical Physics

Abstract

We present theoretical predictions for mono-Z production in the search for dark matter in Run-II at the LHC, including next-to-leading order QCD corrections and parton-shower effects. We consider generic simplified models with vector and scalar s-channel mediators. The calculation is performed by implementing the simplified models in the FeynRules/MadGraph5_aMC@NLO framework, which allows us to include higher-order QCD corrections and parton-shower effects in an automated way. We find that these corrections are sizeable and help to reduce the theoretical uncertainties. We also investigate the discovery potential in several benchmark scenarios in the 13 TeV run at the LHC.

Keywords

NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Baer, K.-Y. Choi, J.E. Kim and L. Roszkowski, Dark matter production in the early Universe: beyond the thermal WIMP paradigm, Phys. Rept. 555 (2014) 1 [arXiv:1407.0017] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    G.B. Gelmini, TASI 2014 lectures: the hunt for dark matter, arXiv:1502.01320 [INSPIRE].
  3. [3]
    ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 10 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-147 (2012).
  4. [4]
    ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 110 (2013) 011802 [arXiv:1209.4625] [INSPIRE].
  5. [5]
    ATLAS collaboration, Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. Lett. 112 (2014) 041802 [arXiv:1309.4017] [INSPIRE].
  6. [6]
    ATLAS collaboration, Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 012004 [arXiv:1404.0051] [INSPIRE].
  7. [7]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
  8. [8]
    CMS collaboration, Search for new phenomena in monophoton final states in proton-proton collisions at \( \sqrt{s}=8 \) TeV, arXiv:1410.8812 [INSPIRE].
  9. [9]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  10. [10]
    Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Effective dark matter model: relic density, CDMS II, Fermi LAT and LHC, JHEP 08 (2011) 018 [arXiv:0912.4511] [INSPIRE].Google Scholar
  11. [11]
    Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the frontier of dark matter direct detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M. Beltrán, D. Hooper, E.W. Kolb, Z.A.C. Krusberg and T.M.P. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].ADSGoogle Scholar
  15. [15]
    I.M. Shoemaker and L. Vecchi, Unitarity and monojet bounds on models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].ADSGoogle Scholar
  16. [16]
    G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, Phys. Lett. B 728 (2014) 412 [arXiv:1307.2253] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    G. Busoni, A. De Simone, J. Gramling, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, part II: complete analysis for the s-channel, JCAP 06 (2014) 060 [arXiv:1402.1275] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    G. Busoni, A. De Simone, T. Jacques, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC part III: analysis for the t-channel, JCAP 09 (2014) 022 [arXiv:1405.3101] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    J. Alwall, P. Schuster and N. Toro, Simplified models for a first characterization of new physics at the LHC, Phys. Rev. D 79 (2009) 075020 [arXiv:0810.3921] [INSPIRE].ADSGoogle Scholar
  21. [21]
    LHC New Physics Working Group collaboration, D. Alves, Simplified models for LHC new physics searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].
  22. [22]
    J. Goodman and W. Shepherd, LHC bounds on UV-complete models of dark matter, arXiv:1111.2359 [INSPIRE].
  23. [23]
    H. An, X. Ji and L.-T. Wang, Light dark matter and Z dark force at colliders, JHEP 07 (2012) 182 [arXiv:1202.2894] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    H. An, L.-T. Wang and H. Zhang, Dark matter with t-channel mediator: a simple step beyond contact interaction, Phys. Rev. D 89 (2014) 115014 [arXiv:1308.0592] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. DiFranzo, K.I. Nagao, A. Rajaraman and T.M.P. Tait, Simplified models for dark matter interacting with quarks, JHEP 11 (2013) 014 [Erratum ibid. 01 (2014) 162] [arXiv:1308.2679] [INSPIRE].
  27. [27]
    M. Papucci, A. Vichi and K.M. Zurek, Monojet versus the rest of the world I: t-channel models, JHEP 11 (2014) 024 [arXiv:1402.2285] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    A. Berlin, D. Hooper and S.D. McDermott, Simplified dark matter models for the galactic center gamma-ray excess, Phys. Rev. D 89 (2014) 115022 [arXiv:1404.0022] [INSPIRE].ADSGoogle Scholar
  29. [29]
    O. Buchmueller, M.J. Dolan, S.A. Malik and C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: vector mediators, JHEP 01 (2015) 037 [arXiv:1407.8257] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    J. Abdallah et al., Simplified models for dark matter and missing energy searches at the LHC, arXiv:1409.2893 [INSPIRE].
  31. [31]
    S.A. Malik et al., Interplay and characterization of dark matter searches at colliders and in direct detection experiments, Phys. Dark Univ. 9-10 (2015) 51 [arXiv:1409.4075] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    M.R. Buckley, D. Feld and D. Goncalves, Scalar simplified models for dark matter, Phys. Rev. D 91 (2015) 015017 [arXiv:1410.6497] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining dark sectors at colliders: beyond the effective theory approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].ADSGoogle Scholar
  34. [34]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark matter complementarity and the Z portal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].ADSGoogle Scholar
  35. [35]
    T. Jacques and K. Nordstrom, Mapping monojet constraints onto Simplified Dark Matter Models, JHEP 06 (2015) 142 [arXiv:1502.05721] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    U. Haisch and E. Re, Simplified dark matter top-quark interactions at the LHC, JHEP 06 (2015) 078 [arXiv:1503.00691] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dirac-fermionic dark matter in U(1)X models, JHEP 10 (2015) 076 [arXiv:1506.06767] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Closing up on dark sectors at colliders: from 14 to 100 TeV, arXiv:1509.02904 [INSPIRE].
  39. [39]
    J. Abdallah et al., Simplified models for dark matter searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    D. Abercrombie et al., Dark matter benchmark models for early LHC Run-2 searches: report of the ATLAS/CMS dark matter forum, arXiv:1507.00966 [INSPIRE].
  41. [41]
    J. Wang, C.S. Li, D.Y. Shao and H. Zhang, Next-to-leading order QCD predictions for the signal of dark matter and photon associated production at the LHC, Phys. Rev. D 84 (2011) 075011 [arXiv:1107.2048] [INSPIRE].ADSGoogle Scholar
  42. [42]
    F.P. Huang, C.S. Li, J. Wang and D.Y. Shao, Searching for the signal of dark matter and photon associated production at the LHC beyond leading order, Phys. Rev. D 87 (2013) 094018 [arXiv:1210.0195] [INSPIRE].ADSGoogle Scholar
  43. [43]
    P.J. Fox and C. Williams, Next-to-leading order predictions for dark matter production at hadron colliders, Phys. Rev. D 87 (2013) 054030 [arXiv:1211.6390] [INSPIRE].ADSGoogle Scholar
  44. [44]
    U. Haisch, F. Kahlhoefer and J. Unwin, The impact of heavy-quark loops on LHC dark matter searches, JHEP 07 (2013) 125 [arXiv:1208.4605] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    U. Haisch, F. Kahlhoefer and E. Re, QCD effects in mono-jet searches for dark matter, JHEP 12 (2013) 007 [arXiv:1310.4491] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    M. Song, G. Li, W.-G. Ma, R.-Y. Zhang and J.-Y. Guo, Dark matter pair associated with a W boson production at the LHC in next-to-leading order QCD, JHEP 09 (2014) 069 [arXiv:1403.2142] [INSPIRE].Google Scholar
  47. [47]
    L.M. Carpenter, A. Nelson, C. Shimmin, T.M.P. Tait and D. Whiteson, Collider searches for dark matter in events with a Z boson and missing energy, Phys. Rev. D 87 (2013) 074005 [arXiv:1212.3352] [INSPIRE].ADSGoogle Scholar
  48. [48]
    N.F. Bell et al., Searching for dark matter at the LHC with a mono-Z, Phys. Rev. D 86 (2012) 096011 [arXiv:1209.0231] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J.-Y. Chen, E.W. Kolb and L.-T. Wang, Dark matter coupling to electroweak gauge and Higgs bosons: an effective field theory approach, Phys. Dark Univ. 2 (2013) 200 [arXiv:1305.0021] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    A. Alves and K. Sinha, Searches for dark matter at the LHC: a multivariate analysis in the mono-Z channel, Phys. Rev. D 92 (2015) 115013 [arXiv:1507.08294] [INSPIRE].ADSGoogle Scholar
  51. [51]
    A. Crivellin, U. Haisch and A. Hibbs, LHC constraints on gauge boson couplings to dark matter, Phys. Rev. D 91 (2015) 074028 [arXiv:1501.00907] [INSPIRE].ADSGoogle Scholar
  52. [52]
    ATLAS collaboration, Measurement of ZZ production in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous ZZZ and ZZγ couplings with the ATLAS detector, JHEP 03 (2013) 128 [arXiv:1211.6096] [INSPIRE].
  53. [53]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  54. [54]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    M. Backovic, M. Kramer, F. Maltoni, A. Martini, K. Mawatari and M. Pellen, Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators, Eur. Phys. J. C 75 (2015) 482 [arXiv:1508.05327] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    O. Mattelaer and E. Vryonidou, Dark matter production through loop-induced processes at the LHC: the s-channel mediator case, Eur. Phys. J. C 75 (2015) 436 [arXiv:1508.00564] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP 10 (2015) 146 [arXiv:1507.00020] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
  59. [59]
    K. Cheung, K. Mawatari, E. Senaha, P.-Y. Tseng and T.-C. Yuan, The top window for dark matter, JHEP 10 (2010) 081 [arXiv:1009.0618] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    T. Lin, E.W. Kolb and L.-T. Wang, Probing dark matter couplings to top and bottom quarks at the LHC, Phys. Rev. D 88 (2013) 063510 [arXiv:1303.6638] [INSPIRE].ADSGoogle Scholar
  61. [61]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  62. [62]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  63. [63]
    S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    S. Baek, P. Ko, W.-I. Park and E. Senaha, Higgs portal vector dark matter: revisited, JHEP 05 (2013) 036 [arXiv:1212.2131] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    M. Duch, B. Grzadkowski and M. McGarrie, A stable Higgs portal with vector dark matter, JHEP 09 (2015) 162 [arXiv:1506.08805] [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The universal FeynRules output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    R.C. Cotta, J.L. Hewett, M.P. Le and T.G. Rizzo, Bounds on dark matter interactions with electroweak gauge bosons, Phys. Rev. D 88 (2013) 116009 [arXiv:1210.0525] [INSPIRE].ADSGoogle Scholar
  69. [69]
    V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].
  71. [71]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].CrossRefADSGoogle Scholar
  72. [72]
    C. Degrande, Automatic evaluation of UV and R2 terms for beyond the standard model lagrangians: a proof-of-principle, Comput. Phys. Commun. 197 (2015) 239 [arXiv:1406.3030] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  73. [73]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].
  75. [75]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  76. [76]
    J. Alwall, C. Duhr, B. Fuks, O. Mattelaer, D.G. Ozturk and C.-H. Shen, Computing decay rates for new physics theories with FeynRules and MadGraph 5 aMC@NLO, Comput. Phys. Commun. 197 (2015) 312 [arXiv:1402.1178] [INSPIRE].CrossRefGoogle Scholar
  77. [77]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.PRISMA Cluster of Excellence and Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany
  2. 2.Department of Physics, LEPPCornell UniversityIthacaU.S.A.
  3. 3.Department of PhysicsBrookhaven National LaboratoryUptonU.S.A.

Personalised recommendations