Advertisement

Journal of High Energy Physics

, 2016:81 | Cite as

Low-derivative operators of the Standard Model effective field theory via Hilbert series methods

  • Landon Lehman
  • Adam Martin
Open Access
Regular Article - Theoretical Physics

Abstract

In this work, we explore an extension of Hilbert series techniques to count operators that include derivatives. For sufficiently low-derivative operators, we conjecture an algorithm that gives the number of invariant operators, properly accounting for redundancies due to the equations of motion and integration by parts. Specifically, the conjectured technique can be applied whenever there is only one Lorentz invariant for a given partitioning of derivatives among the fields. At higher numbers of derivatives, equation of motion redundancies can be removed, but the increased number of Lorentz contractions spoils the subtraction of integration by parts redundancies. While restricted, this technique is sufficient to automatically recreate the complete set of invariant operators of the Standard Model effective field theory for dimensions 6 and 7 (for arbitrary numbers of flavors). At dimension 8, the algorithm does not automatically generate the complete operator set; however, it suffices for all but five classes of operators. For these remaining classes, there is a well defined procedure to manually determine the number of invariants. Assuming our method is correct, we derive a set of 535 dimension-8 N f = 1 operators.

Keywords

Gauge Symmetry Effective field theories Global Symmetries Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Lehman and A. Martin, Hilbert Series for Constructing Lagrangians: expanding the phenomenologists toolbox, Phys. Rev. D 91 (2015) 105014 [arXiv:1503.07537] [INSPIRE].ADSGoogle Scholar
  2. [2]
    B. Henning, X. Lu, T. Melia and H. Murayama, Hilbert series and operator bases with derivatives in effective field theories, arXiv:1507.07240 [INSPIRE].
  3. [3]
    P. Pouliot, Molien function for duality, JHEP 01 (1999) 021 [hep-th/9812015] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    F.A. Dolan, Counting BPS operators in N = 4 SYM, Nucl. Phys. B 790 (2008) 432 [arXiv:0704.1038] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    J. Gray, A. Hanany, Y.-H. He, V. Jejjala and N. Mekareeya, SQCD: A Geometric Apercu, JHEP 05 (2008) 099 [arXiv:0803.4257] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    A. Hanany, N. Mekareeya and G. Torri, The Hilbert Series of Adjoint SQCD, Nucl. Phys. B 825 (2010) 52 [arXiv:0812.2315] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    Y. Chen and N. Mekareeya, The Hilbert series of U/SU SQCD and Toeplitz Determinants, Nucl. Phys. B 850 (2011) 553 [arXiv:1104.2045] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    A. Butti, D. Forcella, A. Hanany, D. Vegh and A. Zaffaroni, Counting Chiral Operators in Quiver Gauge Theories, JHEP 11 (2007) 092 [arXiv:0705.2771] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: The plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    D. Forcella, A. Hanany and A. Zaffaroni, Baryonic Generating Functions, JHEP 12 (2007) 022 [hep-th/0701236] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert Series of the One Instanton Moduli Space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    A. Hanany, N. Mekareeya and S.S. Razamat, Hilbert Series for Moduli Spaces of Two Instantons, JHEP 01 (2013) 070 [arXiv:1205.4741] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    D. Rodríguez-Gómez and G. Zafrir, On the 5d instanton index as a Hilbert series, Nucl. Phys. B 878 (2014) 1 [arXiv:1305.5684] [INSPIRE].
  15. [15]
    A. Dey, A. Hanany, N. Mekareeya, D. Rodríguez-Gómez and R.-K. Seong, Hilbert Series for Moduli Spaces of Instantons on \( {\mathbb{C}}^2/{\mathbb{Z}}_n \), JHEP 01 (2014) 182 [arXiv:1309.0812] [INSPIRE].
  16. [16]
    A. Hanany and R.-K. Seong, Hilbert series and moduli spaces of k U(N ) vortices, JHEP 02 (2015) 012 [arXiv:1403.4950] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    L. Begin, C. Cummins and P. Mathieu, Generating functions for tensor products, hep-th/9811113 [INSPIRE].
  18. [18]
    A. Hanany and R. Kalveks, Highest Weight Generating Functions for Hilbert Series, JHEP 10 (2014) 152 [arXiv:1408.4690] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    E.E. Jenkins and A.V. Manohar, Algebraic Structure of Lepton and Quark Flavor Invariants and CP-violation, JHEP 10 (2009) 094 [arXiv:0907.4763] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    A. Hanany, E.E. Jenkins, A.V. Manohar and G. Torri, Hilbert Series for Flavor Invariants of the Standard Model, JHEP 03 (2011) 096 [arXiv:1010.3161] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    A. Merle and R. Zwicky, Explicit and spontaneous breaking of SU(3) into its finite subgroups, JHEP 02 (2012) 128 [arXiv:1110.4891] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Scaling of Higgs Operators and Γ(h → γγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays h → γγ, γZ, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    R. Alonso, H.-M. Chang, E.E. Jenkins, A.V. Manohar and B. Shotwell, Renormalization group evolution of dimension-six baryon number violating operators, Phys. Lett. B 734 (2014) 302 [arXiv:1405.0486] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    R. Alonso, E.E. Jenkins and A.V. Manohar, Holomorphy without Supersymmetry in the Standard Model Effective Field Theory, Phys. Lett. B 739 (2014) 95 [arXiv:1409.0868] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    M. Trott, On the consistent use of Constructed Observables, JHEP 02 (2015) 046 [arXiv:1409.7605] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP 01 (2016) 023 [arXiv:1412.1837] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    S. Willenbrock and C. Zhang, Effective Field Theory Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 64 (2014) 83 [arXiv:1401.0470] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    J. Elias-Miro, J.R. Espinosa and A. Pomarol, One-loop non-renormalization results in EFTs, Phys. Lett. B 747 (2015) 272 [arXiv:1412.7151] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    R.S. Gupta, A. Pomarol and F. Riva, BSM Primary Effects, Phys. Rev. D 91 (2015) 035001 [arXiv:1405.0181] [INSPIRE].ADSGoogle Scholar
  35. [35]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  36. [36]
    M. Duehrssen-Debling et al., Higgs Basis, Proposal for an EFT basis choice for LHC HXSWG, LHC Higgs Cross section Working Group 2, LHCHXSWG-INT-2015-001.
  37. [37]
    C. Cheung and C.-H. Shen, Nonrenormalization Theorems without Supersymmetry, Phys. Rev. Lett. 115 (2015) 071601 [arXiv:1505.01844] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    L. Berthier and M. Trott, Consistent constraints on the Standard Model Effective Field Theory, arXiv:1508.05060 [INSPIRE].
  39. [39]
    C.-W. Chiang and R. Huo, Standard Model Effective Field Theory: Integrating out a Generic Scalar, JHEP 09 (2015) 152 [arXiv:1505.06334] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    R. Huo, Standard Model Effective Field Theory: Integrating out Vector-Like Fermions, JHEP 09 (2015) 037 [arXiv:1506.00840] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    R. Huo, Effective Field Theory of Integrating out Sfermions in the MSSM: Complete One-Loop Analysis, arXiv:1509.05942 [INSPIRE].
  42. [42]
    A. Drozd, J. Ellis, J. Quevillon and T. You, Comparing EFT and Exact One-Loop Analyses of Non-Degenerate Stops, JHEP 06 (2015) 028 [arXiv:1504.02409] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    L.F. Abbott and M.B. Wise, The Effective Hamiltonian for Nucleon Decay, Phys. Rev. D 22 (1980) 2208 [INSPIRE].ADSGoogle Scholar
  47. [47]
    L. Lehman, Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators, Phys. Rev. D 90 (2014) 125023 [arXiv:1410.4193] [INSPIRE].ADSGoogle Scholar
  48. [48]
    G.J. Gounaris, J. Layssac and F.M. Renard, Addendum to off-shell structure of the anomalous Z and gamma selfcouplings, Phys. Rev. D 65 (2002) 017302 [INSPIRE].ADSGoogle Scholar
  49. [49]
    C. Degrande, A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions, JHEP 02 (2014) 101 [arXiv:1308.6323] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    H.D. Politzer, Power Corrections at Short Distances, Nucl. Phys. B 172 (1980) 349 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  51. [51]
    H. Georgi, On-shell effective field theory, Nucl. Phys. B 361 (1991) 339 [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230] [INSPIRE].
  53. [53]
    C. Grosse-Knetter, Effective Lagrangians with higher derivatives and equations of motion, Phys. Rev. D 49 (1994) 6709 [hep-ph/9306321] [INSPIRE].
  54. [54]
    H. Simma, Equations of motion for effective Lagrangians and penguins in rare B decays, Z. Phys. C 61 (1994) 67 [hep-ph/9307274] [INSPIRE].
  55. [55]
    K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].ADSGoogle Scholar
  56. [56]
    B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, …: Higher dimension operators in the SM EFT,arXiv:1512.03433 [INSPIRE].
  57. [57]
    J.L. Gross, J. Yellen and P. Zhang, Handbook of Graph Theory, second edition, Chapman & Hall/CRC (2013).Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Notre DameNotre DameU.S.A.

Personalised recommendations