Advertisement

Journal of High Energy Physics

, 2016:47 | Cite as

Brane brick models, toric Calabi-Yau 4-folds and 2d (0,2) quivers

  • Sebastián Franco
  • Sangmin Lee
  • Rak-Kyeong Seong
Open Access
Regular Article - Theoretical Physics

Abstract

We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2d (generically) \( \mathcal{N}=\left(0,2\right) \) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau associated to a given gauge theory and vice versa.

Keywords

Brane Dynamics in Gauge Theories Supersymmetric gauge theory D-branes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP 03 (2014) 076 [arXiv:1310.0818] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, arXiv:1306.4320 [INSPIRE].
  3. [3]
    H. Garcia-Compean and A.M. Uranga, Brane box realization of chiral gauge theories in two-dimensions, Nucl. Phys. B 539 (1999) 329 [hep-th/9806177] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    C.-h. Ahn and H. Kim, Branes at \( {\mathrm{\mathbb{C}}}^4/\Lambda \) singularity from toric geometry, JHEP 04 (1999) 012 [hep-th/9903181] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    T. Sarkar, D-brane gauge theories from toric singularities of the form \( {\mathrm{\mathbb{C}}}^3/\Gamma \) and \( {\mathrm{\mathbb{C}}}^4/\Gamma \), Nucl. Phys. B 595 (2001) 201 [hep-th/0005166] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    S. Franco, D. Ghim, S. Lee, R.-K. Seong and D. Yokoyama, 2d (0, 2) Quiver Gauge Theories and D-branes, JHEP 09 (2015) 072 [arXiv:1506.03818] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    D. Kutasov and J. Lin, (0, 2) Dynamics From Four Dimensions, Phys. Rev. D 89 (2014) 085025 [arXiv:1310.6032] [INSPIRE].ADSGoogle Scholar
  8. [8]
    D. Kutasov and J. Lin, (0, 2) ADE Models From Four Dimensions, arXiv:1401.5558 [INSPIRE].
  9. [9]
    R. Tatar, Geometric Constructions of Two Dimensional (0, 2) SUSY Theories, Phys. Rev. D 92 (2015) 045006 [arXiv:1506.05372] [INSPIRE].ADSGoogle Scholar
  10. [10]
    E. Witten, Phases of \( \mathcal{N}=2 \) theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    K. Mohri, D-branes and quotient singularities of Calabi-Yau fourfolds, Nucl. Phys. B 521 (1998) 161 [hep-th/9707012] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    A. Hanany and A. Zaffaroni, On the realization of chiral four-dimensional gauge theories using branes, JHEP 05 (1998) 001 [hep-th/9801134] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    A. Hanany and A.M. Uranga, Brane boxes and branes on singularities, JHEP 05 (1998) 013 [hep-th/9805139] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    M. Futaki and K. Ueda, Tropical coamoeba and torus-equivariant homological mirror symmetry for the projective space, arXiv:1001.4858.
  17. [17]
    K.D. Kennaway, Brane Tilings, Int. J. Mod. Phys. A 22 (2007) 2977 [arXiv:0706.1660] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  20. [20]
    G. Mikhalkin, Amoebas of algebraic varieties and tropical geometry, math/0403015.
  21. [21]
    G. Mikhalkin, Amoebas of algebraic varieties, math/0108225.
  22. [22]
    S. Franco, S. Lee and R.-K. Seong, Brane Brick Models and 2d (0, 2) Triality, to appear.Google Scholar
  23. [23]
    M. Nisse and F. Sottile, Non-Archimedean coamoebae, arXiv:1110.1033.
  24. [24]
    S. Franco, Bipartite Field Theories: from D-brane Probes to Scattering Amplitudes, JHEP 11 (2012) 141 [arXiv:1207.0807] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    S. Franco and D. Vegh, Moduli spaces of gauge theories from dimer models: Proof of the correspondence, JHEP 11 (2006) 054 [hep-th/0601063] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    I. Garcia-Etxebarria, F. Saad and A.M. Uranga, Quiver gauge theories at resolved and deformed singularities using dimers, JHEP 06 (2006) 055 [hep-th/0603108] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    R. Kenyon, An introduction to the dimer model, math/0310326.
  29. [29]
    R. Kenyon, A. Okounkov and S. Sheffield, Dimers and amoebae, math-ph/0311005 [INSPIRE].
  30. [30]
    S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    D.R. Morrison and M.R. Plesser, Nonspherical horizons. 1., Adv. Theor. Math. Phys. 3 (1999) 1 [hep-th/9810201] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  33. [33]
    A. Hanany and C. Romelsberger, Counting BPS operators in the chiral ring of \( \mathcal{N}=2 \) supersymmetric gauge theories or \( \mathcal{N}=2 \) braine surgery, Adv. Theor. Math. Phys. 11 (2007) 1091 [hep-th/0611346] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  34. [34]
    B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: The Plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    A. Butti, D. Forcella, A. Hanany, D. Vegh and A. Zaffaroni, Counting Chiral Operators in Quiver Gauge Theories, JHEP 11 (2007) 092 [arXiv:0705.2771] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  36. [36]
    A. Hanany, Counting BPS operators in the chiral ring: The plethystic story, AIP Conf. Proc. 939 (2007) 165 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    A. Gadde, S.S. Razamat and B. Willett, On the reduction of 4d \( \mathcal{N}=1 \) theories on \( {\mathbb{S}}^2 \), JHEP 11 (2015) 163 [arXiv:1506.08795] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    F. Benini, D.S. Park and P. Zhao, Cluster Algebras from Dualities of 2d \( \mathcal{N}=\left(2,2\right) \) Quiver Gauge Theories, Commun. Math. Phys. 340 (2015) 47 [arXiv:1406.2699] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    S. Franco, A. Hanany, D. Krefl, J. Park, A.M. Uranga and D. Vegh, Dimers and orientifolds, JHEP 09 (2007) 075 [arXiv:0707.0298] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    G. Musiker, A graph theoretic expansion formula for cluster algebras of classical type, arXiv:0710.3574.
  41. [41]
    G. Musiker and R. Schiffler, Cluster expansion formulas and perfect matchings, arXiv:0810.3638.
  42. [42]
    K. Lee and R. Schiffler, A Combinatorial Formula for Rank 2 Cluster Variables, arXiv:1106.0952.
  43. [43]
    R. Eager and S. Franco, Colored BPS Pyramid Partition Functions, Quivers and Cluster Transformations, JHEP 09 (2012) 038 [arXiv:1112.1132] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    M. Leoni, S. Neel and P. Turner, Aztec Castles and the dP3 Quiver, J. Phys. A 47 (2014) 474011 [arXiv:1308.3926] [INSPIRE].MathSciNetGoogle Scholar
  45. [45]
    A. Hanany and R.-K. Seong, Brane Tilings and Reflexive Polygons, Fortsch. Phys. 60 (2012) 695 [arXiv:1201.2614] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  46. [46]
    A. Hanany and R.-K. Seong, Brane Tilings and Specular Duality, JHEP 08 (2012) 107 [arXiv:1206.2386] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, The Master Space of \( \mathcal{N}=1 \) Gauge Theories, JHEP 08 (2008) 012 [arXiv:0801.1585] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Sebastián Franco
    • 1
    • 2
  • Sangmin Lee
    • 3
    • 4
    • 5
    • 6
  • Rak-Kyeong Seong
    • 7
  1. 1.Physics DepartmentThe City College of the CUNYNew YorkU.S.A.
  2. 2.The Graduate School and University CenterThe City University of New YorkNew YorkU.S.A.
  3. 3.Center for Theoretical PhysicsSeoul National UniversitySeoulKorea
  4. 4.Department of Physics and AstronomySeoul National UniversitySeoulKorea
  5. 5.College of Liberal StudiesSeoul National UniversitySeoulKorea
  6. 6.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  7. 7.School of PhysicsKorea Institute for Advanced StudySeoulKorea

Personalised recommendations