Advertisement

Journal of High Energy Physics

, 2016:31 | Cite as

Noether’s second theorem and Ward identities for gauge symmetries

  • Steven G. Avery
  • Burkhard U. W. SchwabEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Recently, a number of new Ward identities for large gauge transformations and large diffeomorphisms have been discovered. Some of the identities are reinterpretations of previously known statements, while some appear to be genuinely new. We use Noether’s second theorem with the path integral as a powerful way of generating these kinds of Ward identities. We reintroduce Noether’s second theorem and discuss how to work with the physical remnant of gauge symmetry in gauge fixed systems. We illustrate our mechanism in Maxwell theory, Yang-Mills theory, p-form field theory, and Einstein-Hilbert gravity. We comment on multiple connections between Noether’s second theorem and known results in the recent literature. Our approach suggests a novel point of view with important physical consequences.

Keywords

Gauge Symmetry Space-Time Symmetries Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Bondi et al., Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21.Google Scholar
  2. [2]
    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103.Google Scholar
  3. [3]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New Symmetries of Massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    T. He, P. Mitra and A. Strominger, 2D Kac-Moody Symmetry of 4D Yang-Mills Theory, arXiv:1503.02663 [INSPIRE].
  7. [7]
    D. Kapec, V. Lysov and A. Strominger, Asymptotic Symmetries of Massless QED in Even Dimensions, arXiv:1412.2763 [INSPIRE].
  8. [8]
    D. Kapec, M. Pate and A. Strominger, New Symmetries of QED, arXiv:1506.02906 [INSPIRE].
  9. [9]
    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Higher-Dimensional Supertranslations and Weinberg’s Soft Graviton Theorem, arXiv:1502.07644 [INSPIRE].
  10. [10]
    V. Lysov, S. Pasterski and A. Strominger, Low’s Subleading Soft Theorem as a Symmetry of QED, Phys. Rev. Lett. 113 (2014) 111601 [arXiv:1407.3814] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    A. Strominger and A. Zhiboedov, Gravitational Memory, BMS Supertranslations and Soft Theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    A. Strominger, Magnetic Corrections to the Soft Photon Theorem, Phys. Rev. Lett. 116 (2016) 031602 [arXiv:1509.00543] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    S.G. Avery and B.U.W. Schwab, Burg-Metzner-Sachs symmetry, string theory and soft theorems, Phys. Rev. D 93 (2016) 026003 [arXiv:1506.05789] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. He and E.Y. Yuan, One-loop Scattering Equations and Amplitudes from Forward Limit, Phys. Rev. D 92 (2015) 105004 [arXiv:1508.06027] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Zlotnikov, Sub-sub-leading soft-graviton theorem in arbitrary dimension, JHEP 10 (2014) 148 [arXiv:1407.5936] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    M. Campiglia and A. Laddha, Asymptotic symmetries and subleading soft graviton theorem, Phys. Rev. D 90 (2014) 124028 [arXiv:1408.2228] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C. Kalousios and F. Rojas, Next to subleading soft-graviton theorem in arbitrary dimensions, JHEP 01 (2015) 107 [arXiv:1407.5982] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Local contributions to factorized soft graviton theorems at loop level, Phys. Lett. B 746 (2015) 293 [arXiv:1411.2230] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Constraining subleading soft gluon and graviton theorems, Phys. Rev. D 90 (2014) 065024 [arXiv:1406.6574] [INSPIRE].ADSGoogle Scholar
  22. [22]
    Z. Bern, S. Davies and J. Nohle, On Loop Corrections to Subleading Soft Behavior of Gluons and Gravitons, Phys. Rev. D 90 (2014) 085015 [arXiv:1405.1015] [INSPIRE].ADSGoogle Scholar
  23. [23]
    Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-Energy Behavior of Gluons and Gravitons from Gauge Invariance, Phys. Rev. D 90 (2014) 084035 [arXiv:1406.6987] [INSPIRE].ADSGoogle Scholar
  24. [24]
    T. Klose, T. McLoughlin, D. Nandan, J. Plefka and G. Travaglini, Double-Soft Limits of Gluons and Gravitons, JHEP 07 (2015) 135 [arXiv:1504.05558] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    P. Di Vecchia, R. Marotta and M. Mojaza, Soft theorem for the graviton, dilaton and the Kalb-Ramond field in the bosonic string, JHEP 05 (2015) 137 [arXiv:1502.05258] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    P. Di Vecchia, R. Marotta and M. Mojaza, Double-soft behavior for scalars and gluons from string theory, JHEP 12 (2015) 150 [arXiv:1507.00938] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    M. Bianchi and A.L. Guerrieri, On the soft limit of open string disk amplitudes with massive states, JHEP 09 (2015) 164 [arXiv:1505.05854] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    Y. Geyer, A.E. Lipstein and L. Mason, Ambitwistor strings at null infinity and (subleading) soft limits, Class. Quant. Grav. 32 (2015) 055003 [arXiv:1406.1462] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    B.U.W. Schwab, A Note on Soft Factors for Closed String Scattering, JHEP 03 (2015) 140 [arXiv:1411.6661] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  30. [30]
    B.U.W. Schwab, Subleading Soft Factor for String Disk Amplitudes, JHEP 08 (2014) 062 [arXiv:1406.4172] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    M. Bianchi, S. He, Y.-t. Huang and C. Wen, More on Soft Theorems: Trees, Loops and Strings, Phys. Rev. D 92 (2015) 065022 [arXiv:1406.5155] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A.E. Lipstein, Soft Theorems from Conformal Field Theory, JHEP 06 (2015) 166 [arXiv:1504.01364] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    J. Rao, Soft theorem of \( \mathcal{N}=4 \) SYM in Grassmannian formulation, JHEP 02 (2015) 087 [arXiv:1410.5047] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    Z.-W. Liu, Soft theorems in maximally supersymmetric theories, Eur. Phys. J. C 75 (2015) 105 [arXiv:1410.1616] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    B.U.W. Schwab and A. Volovich, Subleading Soft Theorem in Arbitrary Dimensions from Scattering Equations, Phys. Rev. Lett. 113 (2014) 101601 [arXiv:1404.7749] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    T. Adamo, E. Casali and D. Skinner, Perturbative gravity at null infinity, Class. Quant. Grav. 31 (2014) 225008 [arXiv:1405.5122] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    S.W. Hawking, The Information Paradox for Black Holes, arXiv:1509.01147 [INSPIRE].
  39. [39]
    L. Susskind, Electromagnetic Memory, arXiv:1507.02584 [INSPIRE].
  40. [40]
    T. Andrade and D. Marolf, Asymptotic Symmetries from finite boxes, Class. Quant. Grav. 33 (2016) 015013 [arXiv:1508.02515] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    E. Noether, Invariante Variationsprobleme, in Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918 (1918), pg. 235, http://eudml.org/doc/59024.
  42. [42]
    E. Noether, Invariant Variation Problems, Gott. Nachr. 1918 (1918) 235 [physics/0503066] [INSPIRE].
  43. [43]
    Y. Kosmann-Schwarzbach, The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century, Springer-Verlag, Heidelberg Germany (2011).CrossRefGoogle Scholar
  44. [44]
    G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  45. [45]
    J. Gomis, J. Paris and S. Samuel, Antibracket, antifields and gauge theory quantization, Phys. Rept. 259 (1995) 1 [hep-th/9412228] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  46. [46]
    R. Fulp, T. Lada and J. Stasheff, Noether’s variational theorem II and the BV formalism, math/0204079 [INSPIRE].
  47. [47]
    P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, Heidelberg Germany (1986).CrossRefzbMATHGoogle Scholar
  48. [48]
    J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725.CrossRefADSMathSciNetzbMATHGoogle Scholar
  49. [49]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  50. [50]
    L.F. Abbott and T. Eguchi, Structure of the Yang-Mills Vacuum in Coulomb Gauge, Phys. Lett. B 72 (1977) 215.CrossRefADSGoogle Scholar
  51. [51]
    L.F. Abbott and S. Deser, Charge Definition in Nonabelian Gauge Theories, Phys. Lett. B 116 (1982) 259.CrossRefADSMathSciNetGoogle Scholar
  52. [52]
    D. Bak, D. Cangemi and R. Jackiw, Energy momentum conservation in general relativity, Phys. Rev. D 49 (1994) 5173 [Erratum ibid. D 52 (1995) 3753] [hep-th/9310025] [INSPIRE].
  53. [53]
    S. Silva, On superpotentials and charge algebras of gauge theories, Nucl. Phys. B 558 (1999) 391 [hep-th/9809109] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    B. Julia and S. Silva, Currents and superpotentials in classical gauge invariant theories. 1. Local results with applications to perfect fluids and general relativity, Class. Quant. Grav. 15 (1998) 2173 [gr-qc/9804029] [INSPIRE].
  55. [55]
    B. Julia and S. Silva, Currents and superpotentials in classical gauge theories: 2. Global aspects and the example of affine gravity, Class. Quant. Grav. 17 (2000) 4733 [gr-qc/0005127] [INSPIRE].
  56. [56]
    B. Julia and S. Silva, On covariant phase space methods, hep-th/0205072 [INSPIRE].
  57. [57]
    P.A.M. Dirac, Lectures on Quantum Mechanics, Dover Publications, Mineola U.S.A. (2001).Google Scholar
  58. [58]
    P.A.M. Dirac, Generalized Hamiltonian dynamics, Can. J. Math. 2 (1950) 129 [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  59. [59]
    E. Sharpe, Notes on generalized global symmetries in QFT, Fortsch. Phys. 63 (2015) 659 [arXiv:1508.04770] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].
  61. [61]
    H. Matsumoto, N.J. Papastamatiou and H. Umezawa, The Goldstone theorem and dynamical rearrangement of symmetry in the path-integral formalism, Nucl. Phys. B 82 (1974) 45 [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    H. Matsumoto, N.J. Papastamatiou and H. Umezawa, The formulation of spontaneous breakdown in the path-integral method, Nucl. Phys. B 68 (1974) 236 [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    N. Nakanishi, Ward-takahashi identities in quantum field theory with spontaneously broken symmetry, Prog. Theor. Phys. 51 (1974) 1183 [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    H. Terashima, The Brown-Henneaux’s central charge from the path integral boundary condition, Phys. Lett. B 499 (2001) 229 [hep-th/0011010] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  65. [65]
    H. Terashima, Path integral derivation of Brown-Henneaux’s central charge, Phys. Rev. D 64 (2001) 064016 [hep-th/0102097] [INSPIRE].ADSMathSciNetGoogle Scholar
  66. [66]
    A. Kovner, B. Rosenstein and D. Eliezer, Photon as a Goldstone boson in (2+1)-dimensional Abelian gauge theories, Nucl. Phys. B 350 (1991) 325 [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    P. Kraus and E.T. Tomboulis, Photons and gravitons as Goldstone bosons and the cosmological constant, Phys. Rev. D 66 (2002) 045015 [hep-th/0203221] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Kalb and P. Ramond, Classical direct interstring action, Phys. Rev. D 9 (1974) 2273.ADSGoogle Scholar
  69. [69]
    R.M. Wald and A. Zoupas, A General definition of ’conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].
  70. [70]
    N. Lashkari and M. Van Raamsdonk, Canonical Energy is Quantum Fisher Information, arXiv:1508.00897 [INSPIRE].
  71. [71]
    C. Nazaroglu, Y. Nutku and B. Tekin, Covariant Symplectic Structure and Conserved Charges of Topologically Massive Gravity, Phys. Rev. D 83 (2011) 124039 [arXiv:1104.3404] [INSPIRE].ADSGoogle Scholar
  72. [72]
    T. Azeyanagi, R. Loganayagam, G.S. Ng and M.J. Rodriguez, Covariant Noether Charge for Higher Dimensional Chern-Simons Terms, JHEP 05 (2015) 041 [arXiv:1407.6364] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  73. [73]
    L.F. Abbott and S. Deser, Stability of Gravity with a Cosmological Constant, Nucl. Phys. B 195 (1982) 76 [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    Z. Bern, E. Mottola and S.K. Blau, General covariance of the path integral for quantum gravity, Phys. Rev. D 43 (1991) 1212 [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of PhysicsBrown UniversityProvidenceU.S.A.
  2. 2.Center for Mathematical Science and ApplicationsHarvard UniversityCambridgeU.S.A.

Personalised recommendations