Electrical conductivity and charge diffusion in thermal QCD from the lattice

Abstract

We present a lattice QCD calculation of the charge diffusion coefficient, the electrical conductivity and various susceptibilities of conserved charges, for a range of temperatures below and above the deconfinement crossover. The calculations include the contributions from up, down and strange quarks. We find that the diffusion coefficient is of the order of 1/(2πT ) and has a dip around the crossover temperature. Our results are obtained with lattice simulations containing 2+1 dynamical flavours on anisotropic lattices. The Maximum Entropy Method is used to construct spectral functions from correlators of the conserved vector current.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 [arXiv:1301.2826] [INSPIRE].

    Article  ADS  Google Scholar 

  2. [2]

    C. Gale, S. Jeon and B. Schenke, Hydrodynamic Modeling of Heavy-Ion Collisions, Int. J. Mod. Phys. A 28 (2013) 1340011 [arXiv:1301.5893] [INSPIRE].

    Article  ADS  Google Scholar 

  3. [3]

    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  4. [4]

    B. Ling, T. Springer and M. Stephanov, Hydrodynamics of charge fluctuations and balance functions, Phys. Rev. C 89 (2014) 064901 [arXiv:1310.6036] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    K. Tuchin, Particle production in strong electromagnetic fields in relativistic heavy-ion collisions, Adv. High Energy Phys. 2013 (2013) 490495 [arXiv:1301.0099] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  6. [6]

    L. McLerran and V. Skokov, Comments About the Electromagnetic Field in Heavy-Ion Collisions, Nucl. Phys. A 929 (2014) 184 [arXiv:1305.0774] [INSPIRE].

    Article  ADS  Google Scholar 

  7. [7]

    U. Gürsoy, D. Kharzeev and K. Rajagopal, Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions, Phys. Rev. C 89 (2014) 054905 [arXiv:1401.3805] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    B.G. Zakharov, Electromagnetic response of quark-gluon plasma in heavy-ion collisions, Phys. Lett. B 737 (2014) 262 [arXiv:1404.5047] [INSPIRE].

    Article  ADS  Google Scholar 

  9. [9]

    K. Tuchin, Electromagnetic field and the chiral magnetic effect in the quark-gluon plasma, arXiv:1411.1363 [INSPIRE].

  10. [10]

    D. Satow, Nonlinear electromagnetic response in quark-gluon plasma, Phys. Rev. D 90 (2014) 034018 [arXiv:1406.7032] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    Y. Hirono, M. Hongo and T. Hirano, Estimation of electric conductivity of the quark gluon plasma via asymmetric heavy-ion collisions, Phys. Rev. C 90 (2014) 021903 [arXiv:1211.1114] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, J. Phys. Soc. Japan 12 (1957) 570.

    Article  ADS  MathSciNet  Google Scholar 

  13. [13]

    L.P. Kadanoff and P.C. Martin, Hydrodynamic Equations and Correlation Functions, Annal. Phys. 24 (1963) 419.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. [14]

    G. Aarts and J.M. Martínez Resco, Transport coefficients, spectral functions and the lattice, JHEP 04 (2002) 053 [hep-ph/0203177] [INSPIRE].

    Article  ADS  Google Scholar 

  15. [15]

    H.B. Meyer, A Calculation of the shear viscosity in SU(3) gluodynamics, Phys. Rev. D 76 (2007) 101701 [arXiv:0704.1801] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    H.B. Meyer, A Calculation of the bulk viscosity in SU(3) gluodynamics, Phys. Rev. Lett. 100 (2008) 162001 [arXiv:0710.3717] [INSPIRE].

    Article  ADS  Google Scholar 

  17. [17]

    H.B. Meyer, Transport Properties of the quark-gluon Plasma: A Lattice QCD Perspective, Eur. Phys. J. A 47 (2011) 86 [arXiv:1104.3708] [INSPIRE].

    Article  ADS  Google Scholar 

  18. [18]

    S. Gupta, The Electrical conductivity and soft photon emissivity of the QCD plasma, Phys. Lett. B 597 (2004) 57 [hep-lat/0301006] [INSPIRE].

    Article  ADS  Google Scholar 

  19. [19]

    G. Aarts, C. Allton, J. Foley, S. Hands and S. Kim, Spectral functions at small energies and the electrical conductivity in hot, quenched lattice QCD, Phys. Rev. Lett. 99 (2007) 022002 [hep-lat/0703008] [INSPIRE].

    Article  ADS  Google Scholar 

  20. [20]

    H.-T. Ding et al., Thermal dilepton rate and electrical conductivity: An analysis of vector current correlation functions in quenched lattice QCD, Phys. Rev. D 83 (2011) 034504 [arXiv:1012.4963] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    O. Kaczmarek and M. Müller, Temperature dependence of electrical conductivity and dilepton rates from hot quenched lattice QCD, PoS(LATTICE 2013)175 [arXiv:1312.5609] [INSPIRE].

  22. [22]

    B.B. Brandt, A. Francis, H.B. Meyer and H. Wittig, Thermal Correlators in the ρ channel of two-flavor QCD, JHEP 03 (2013) 100 [arXiv:1212.4200] [INSPIRE].

    Article  ADS  Google Scholar 

  23. [23]

    A. Amato et al., Electrical conductivity of the quark-gluon plasma across the deconfinement transition, Phys. Rev. Lett. 111 (2013) 172001 [arXiv:1307.6763] [INSPIRE].

    Article  ADS  Google Scholar 

  24. [24]

    W. Cassing, O. Linnyk, T. Steinert and V. Ozvenchuk, Electrical Conductivity of Hot QCD Matter, Phys. Rev. Lett. 110 (2013) 182301 [arXiv:1302.0906] [INSPIRE].

    Article  ADS  Google Scholar 

  25. [25]

    S.I. Finazzo and J. Noronha, Holographic calculation of the electric conductivity of the strongly coupled quark-gluon plasma near the deconfinement transition, Phys. Rev. D 89 (2014) 106008 [arXiv:1311.6675] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    T. Steinert and W. Cassing, Electric and magnetic response of hot QCD matter, Phys. Rev. C 89 (2014) 035203 [arXiv:1312.3189] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    Y. Yin, Electrical conductivity of the quark-gluon plasma and soft photon spectrum in heavy-ion collisions, Phys. Rev. C 90 (2014) 044903 [arXiv:1312.4434] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    C.-H. Lee and I. Zahed, Electromagnetic Radiation in Hot QCD Matter: Rates, Electric Conductivity, Flavor Susceptibility and Diffusion, Phys. Rev. C 90 (2014) 025204 [arXiv:1403.1632] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    A. Puglisi, S. Plumari and V. Greco, Shear viscosity η to electric conductivity σ el ratio for the quark-gluon Plasma, arXiv:1407.2559 [INSPIRE].

  30. [30]

    A. Puglisi, S. Plumari and V. Greco, Electric Conductivity from the solution of the Relativistic Boltzmann Equation, Phys. Rev. D 90 (2014) 114009 [arXiv:1408.7043] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    M. Greif, I. Bouras, C. Greiner and Z. Xu, Electric conductivity of the quark-gluon plasma investigated using a perturbative QCD based parton cascade, Phys. Rev. D 90 (2014) 094014 [arXiv:1408.7049] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. [33]

    D. Teaney, Finite temperature spectral densities of momentum and R-charge correlators in N =4 Yang-Mills theory, Phys. Rev. D 74 (2006) 045025 [hep-ph/0602044][INSPIRE].

    ADS  Google Scholar 

  34. [34]

    D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].

    Article  ADS  Google Scholar 

  35. [35]

    R.G. Edwards, B. Joó and H.-W. Lin, Tuning for Three-flavors of Anisotropic Clover Fermions with Stout-link Smearing, Phys. Rev. D 78 (2008) 054501 [arXiv:0803.3960] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [INSPIRE].

  37. [37]

    C. Allton et al., 2+1 flavour thermal studies on an anisotropic lattice, PoS(LATTICE 2013)151 [arXiv:1401.2116] [INSPIRE].

  38. [38]

    G. Aarts et al., The bottomonium spectrum at finite temperature from N f = 2 + 1 lattice QCD, JHEP 07 (2014) 097 [arXiv:1402.6210] [INSPIRE].

    Article  ADS  Google Scholar 

  39. [39]

    Hadron Spectrum collaboration, H.-W. Lin et al., First results from 2+1 dynamical quark flavors on an anisotropic lattice: Light-hadron spectroscopy and setting the strange-quark mass, Phys. Rev. D 79 (2009) 034502 [arXiv:0810.3588] [INSPIRE].

  40. [40]

    SciDAC, LHPC, UKQCD collaboration, R.G. Edwards and B. Joó, The Chroma software system for lattice QCD, Nucl. Phys. Proc. Suppl. 140 (2005) 832 [hep-lat/0409003] [INSPIRE].

    Article  ADS  Google Scholar 

  41. [41]

    P.A. Boyle, The BAGEL assembler generation library, Comput. Phys. Commun. 180 (2009) 2739 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  42. [42]

    Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, The Order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].

  43. [43]

    S. Borsányi et al., QCD thermodynamics with dynamical overlap fermions, Phys. Lett. B 713 (2012) 342 [arXiv:1204.4089] [INSPIRE].

    Article  ADS  Google Scholar 

  44. [44]

    Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, The QCD transition temperature: Results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [INSPIRE].

    Article  ADS  Google Scholar 

  45. [45]

    Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].

  46. [46]

    A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    M. Asakawa, U.W. Heinz and B. Müller, Fluctuation probes of quark deconfinement, Phys. Rev. Lett. 85 (2000) 2072 [hep-ph/0003169] [INSPIRE].

  48. [48]

    M. Bleicher, S. Jeon and V. Koch, Event-by-event fluctuations of the charged particle ratio from nonequilibrium transport theory, Phys. Rev. C 62 (2000) 061902 [hep-ph/0006201] [INSPIRE].

  49. [49]

    S.A. Gottlieb, W. Liu, D. Toussaint, R.L. Renken and R.L. Sugar, Fermion Number Susceptibility in Lattice Gauge Theory, Phys. Rev. D 38 (1988) 2888 [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    C.R. Allton et al., The QCD thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66 (2002) 074507 [hep-lat/0204010] [INSPIRE].

  51. [51]

    R.V. Gavai and S. Gupta, Simple patterns for non-linear susceptibilities near T c , Phys. Rev. D 72 (2005) 054006 [hep-lat/0507023] [INSPIRE].

  52. [52]

    C. Bernard et al., QCD thermodynamics with 2+1 flavors at nonzero chemical potential, Phys. Rev. D 77 (2008) 014503 [arXiv:0710.1330] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    S. Borsányi et al., Fluctuations of conserved charges at finite temperature from lattice QCD, JHEP 01 (2012) 138 [arXiv:1112.4416] [INSPIRE].

    Article  ADS  Google Scholar 

  54. [54]

    A. Bazavov et al., Quark number susceptibilities at high temperatures, Phys. Rev. D 88 (2013) 094021 [arXiv:1309.2317] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    S. Borsányi et al., QCD thermodynamics with continuum extrapolated Wilson fermions I, JHEP 08 (2012) 126 [arXiv:1205.0440] [INSPIRE].

    Article  ADS  Google Scholar 

  56. [56]

    P. Hasenfratz and F. Karsch, Chemical Potential on the Lattice, Phys. Lett. B 125 (1983) 308 [INSPIRE].

    Article  ADS  Google Scholar 

  57. [57]

    P. Giudice et al., Electric charge susceptibility in 2+1 flavour QCD on an anisotropic lattice, PoS(LATTICE 2013)492 [arXiv:1309.6253] [INSPIRE].

  58. [58]

    J.P. Blaizot, E. Iancu and A. Rebhan, Quark number susceptibilities from HTL resummed thermodynamics, Phys. Lett. B 523 (2001) 143 [hep-ph/0110369] [INSPIRE].

  59. [59]

    Hadron Spectrum collaboration, J.J. Dudek, R.G. Edwards and C.E. Thomas, Energy dependence of the ρ resonance in ππ elastic scattering from lattice QCD, Phys. Rev. D 87 (2013) 034505 [arXiv:1212.0830] [INSPIRE].

  60. [60]

    J.O. Andersen, S. Mogliacci, N. Su and A. Vuorinen, Quark number susceptibilities from resummed perturbation theory, Phys. Rev. D 87 (2013) 074003 [arXiv:1210.0912] [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    C. Ratti, R. Bellwied, M. Cristoforetti and M. Barbaro, Are there hadronic bound states above the QCD transition temperature?, Phys. Rev. D 85 (2012) 014004 [arXiv:1109.6243] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    R. Bellwied, S. Borsányi, Z. Fodor, S.D. Katz and C. Ratti, Is there a flavor hierarchy in the deconfinement transition of QCD?, Phys. Rev. Lett. 111 (2013) 202302 [arXiv:1305.6297] [INSPIRE].

    Article  ADS  Google Scholar 

  63. [63]

    A. Bazavov et al., Strangeness at high temperatures: from hadrons to quarks, Phys. Rev. Lett. 111 (2013) 082301 [arXiv:1304.7220] [INSPIRE].

    Article  ADS  Google Scholar 

  64. [64]

    Y. Burnier, Quarkonium spectral function in medium at next-to-leading order for any quark mass, arXiv:1410.1304 [INSPIRE].

  65. [65]

    M. Asakawa, T. Hatsuda and Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys. 46 (2001) 459 [hep-lat/0011040] [INSPIRE].

  66. [66]

    Y. Burnier, M. Laine and L. Mether, A Test on analytic continuation of thermal imaginary-time data, Eur. Phys. J. C 71 (2011) 1619 [arXiv:1101.5534] [INSPIRE].

    Article  ADS  Google Scholar 

  67. [67]

    Y. Burnier and M. Laine, Towards flavour diffusion coefficient and electrical conductivity without ultraviolet contamination, Eur. Phys. J. C 72 (2012) 1902 [arXiv:1201.1994] [INSPIRE].

    Article  ADS  Google Scholar 

  68. [68]

    Y. Burnier and A. Rothkopf, Bayesian Approach to Spectral Function Reconstruction for Euclidean Quantum Field Theories, Phys. Rev. Lett. 111 (2013) 182003 [arXiv:1307.6106] [INSPIRE].

    Article  ADS  Google Scholar 

  69. [69]

    R.K. Bryan, Maximum entropy analysis of oversampled data problems, Eur. Biophys. J. 18 (1990) 165.

    Article  MathSciNet  Google Scholar 

  70. [70]

    F. Karsch, E. Laermann, P. Petreczky and S. Stickan, Infinite temperature limit of meson spectral functions calculated on the lattice, Phys. Rev. D 68 (2003) 014504 [hep-lat/0303017] [INSPIRE].

  71. [71]

    G. Aarts and J.M. Martínez Resco, Continuum and lattice meson spectral functions at nonzero momentum and high temperature, Nucl. Phys. B 726 (2005) 93 [hep-lat/0507004] [INSPIRE].

  72. [72]

    L.P. Csernai, J. Kapusta and L.D. McLerran, On the Strongly-Interacting Low-Viscosity Matter Created in Relativistic Nuclear Collisions, Phys. Rev. Lett. 97 (2006) 152303 [nucl-th/0604032] [INSPIRE].

  73. [73]

    H.T. Ding et al., Charmonium properties in hot quenched lattice QCD, Phys. Rev. D 86 (2012) 014509 [arXiv:1204.4945] [INSPIRE].

    ADS  Google Scholar 

  74. [74]

    S. Caron-Huot, M. Laine and G.D. Moore, A Way to estimate the heavy quark thermalization rate from the lattice, JHEP 04 (2009) 053 [arXiv:0901.1195] [INSPIRE].

    Article  ADS  Google Scholar 

  75. [75]

    D. Banerjee, S. Datta, R. Gavai and P. Majumdar, Heavy Quark Momentum Diffusion Coefficient from Lattice QCD, Phys. Rev. D 85 (2012) 014510 [arXiv:1109.5738] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    A. Francis et al., Towards the continuum limit in transport coefficient computations, PoS(LATTICE 2013)453 [arXiv:1311.3759] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gert Aarts.

Additional information

ArXiv ePrint: 1412.6411

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aarts, G., Allton, C., Amato, A. et al. Electrical conductivity and charge diffusion in thermal QCD from the lattice. J. High Energ. Phys. 2015, 186 (2015). https://doi.org/10.1007/JHEP02(2015)186

Download citation

Keywords

  • Quark-Gluon Plasma
  • Lattice QCD
  • Phase Diagram of QCD