Journal of High Energy Physics

, 2015:185 | Cite as

Argyres-Douglas theories and S-duality

  • Matthew Buican
  • Simone Giacomelli
  • Takahiro Nishinaka
  • Constantinos Papageorgakis
Open Access
Regular Article - Theoretical Physics

Abstract

We generalize S-duality to \( \mathcal{N}=2 \) superconformal field theories (SCFTs) with Coulomb branch operators of non-integer scaling dimension. As simple examples, we find minimal generalizations of the S-dualities discovered in SU(2) gauge theory with four fundamental flavors by Seiberg and Witten and in SU(3) gauge theory with six fundamental flavors by Argyres and Seiberg. Our constructions start by weakly gauging diagonal SU(2) and SU(3) flavor symmetry subgroups of two copies of a particular rank-one Argyres-Douglas theory (along with sufficient numbers of hypermultiplets to guarantee conformality of the gauging). As we explore the resulting conformal manifold of the SU(2) SCFT, we find an action of S-duality on the parameters of the theory that is reminiscent of Spin(8) triality. On the other hand, as we explore the conformal manifold of the SU(3) theory, we find that an exotic rank-two SCFT emerges in a dual SU(2) description.

Keywords

Supersymmetry and Duality Supersymmetric gauge theory Extended Supersymmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V. Asnin, On metric geometry of conformal moduli spaces of four-dimensional superconformal theories, JHEP 09 (2010) 012 [arXiv:0912.2529] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    C. Montonen and D.I. Olive, Magnetic monopoles as gauge particles?, Phys. Lett. B 72 (1977) 117 [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    P. Goddard, J. Nuyts and D.I. Olive, Gauge theories and magnetic charge, Nucl. Phys. B 125 (1977) 1 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    E. Witten and D.I. Olive, Supersymmetry algebras that include topological charges, Phys. Lett. B 78 (1978) 97 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    H. Osborn, Topological charges for N = 4 supersymmetric gauge theories and monopoles of spin 1, Phys. Lett. B 83 (1979) 321 [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    P.C. Argyres and J.R. Wittig, Infinite coupling duals of N = 2 gauge theories and new rank 1 superconformal field theories, JHEP 01 (2008) 074 [arXiv:0712.2028] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    O. Chacaltana and J. Distler, Tinkertoys for Gaiotto duality, JHEP 11 (2010) 099 [arXiv:1008.5203] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, New N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    D. Xie and P. Zhao, Central charges and RG flow of strongly-coupled N = 2 theory, JHEP 03 (2013) 006 [arXiv:1301.0210] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    S. Cecotti, A. Neitzke and C. Vafa, R-twisting and 4d/2d correspondences, arXiv:1006.3435 [INSPIRE].
  16. [16]
    K. Kodaira, On compact analytic surfaces II, Ann. Math. 77 (1963) 563.CrossRefMATHGoogle Scholar
  17. [17]
    S. Giacomelli, Confinement and duality in supersymmetric gauge theories, arXiv:1309.5299 [INSPIRE].
  18. [18]
    D. Xie, General Argyres-Douglas theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    E. Witten, An SU(2) anomaly, Phys. Lett. B 117 (1982) 324 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    M. Buican, T. Nishinaka and C. Papageorgakis, Constraints on chiral operators in \( \mathcal{N}=2 \) SCFTs, JHEP 12 (2014) 095 [arXiv:1407.2835] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    M. Buican, Minimal distances between SCFTs, JHEP 01 (2014) 155 [arXiv:1311.1276] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  23. [23]
    K. Papadodimas, Topological anti-topological fusion in four-dimensional superconformal field theories, JHEP 08 (2010) 118 [arXiv:0910.4963] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    O. Aharony and Y. Tachikawa, A holographic computation of the central charges of D = 4, N = 2 SCFTs, JHEP 01 (2008) 037 [arXiv:0711.4532] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    S. Cecotti and C. Vafa, Classification of complete N = 2 supersymmetric theories in 4 dimensions, Surveys in differential geometry, vol 18 (2013) [arXiv:1103.5832] [INSPIRE].
  26. [26]
    D. Gaiotto, G.W. Moore and A. Neitzke, Spectral networks and snakes, Annales Henri Poincaré 15 (2014) 61 [arXiv:1209.0866] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  27. [27]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].
  28. [28]
    A.D. Shapere and Y. Tachikawa, Central charges of N = 2 superconformal field theories in four dimensions, JHEP 09 (2008) 109 [arXiv:0804.1957] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    D. Nanopoulos and D. Xie, More three dimensional mirror pairs, JHEP 05 (2011) 071 [arXiv:1011.1911] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    P. Boalch, Irregular connections and Kac-Moody root systems, arXiv:0806.1050.
  31. [31]
    P. Boalch, Hyperkähler manifolds and nonabelian Hodge theory of (irregular) curves, arXiv:1203.6607.
  32. [32]
    D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  33. [33]
    A. Zhiboedov, On conformal field theories with extremal a/c values, JHEP 04 (2014) 038 [arXiv:1304.6075] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin, Mirror symmetry in three-dimensional theories, \( \mathrm{S}\mathrm{L}\left(2,\mathrm{\mathbb{Z}}\right) \) and D-brane moduli spaces, Nucl. Phys. B 493 (1997) 148 [hep-th/9612131] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    P.C. Argyres, M.R. Plesser and A.D. Shapere, The coulomb phase of N = 2 supersymmetric QCD, Phys. Rev. Lett. 75 (1995) 1699 [hep-th/9505100] [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  36. [36]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb branch and the moduli space of instantons, JHEP 12 (2014) 103 [arXiv:1408.6835] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    M. Buican and T. Nishinaka, Compact conformal manifolds, JHEP 01 (2015) 112 [arXiv:1410.3006] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    S. Cecotti, M. Del Zotto and S. Giacomelli, More on the \( \mathcal{N}=2 \) uperconformal systems of type D p(G), JHEP 04 (2013) 153 [arXiv:1303.3149] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    I. Yaakov, Redeeming bad theories, JHEP 11 (2013) 189 [arXiv:1303.2769] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Matthew Buican
    • 1
  • Simone Giacomelli
    • 2
  • Takahiro Nishinaka
    • 1
  • Constantinos Papageorgakis
    • 3
  1. 1.NHETC and Department of Physics and AstronomyRutgers UniversityPiscatawayU.S.A.
  2. 2.Université Libre de Bruxelles and International Solvay InstitutesBrusselsBelgium
  3. 3.CRST and School of Physics and AstronomyQueen Mary University of LondonLondonU.K.

Personalised recommendations