Advertisement

Journal of High Energy Physics

, 2015:184 | Cite as

\( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) decays in the Standard Model and beyond

  • Andrzej J. Buras
  • Jennifer Girrbach-Noe
  • Christoph Niehoff
  • David M. Straub
Open Access
Regular Article - Theoretical Physics

Abstract

We present an analysis of the rare exclusive B decays \( B\to K\nu \overline{\nu} \) and \( B\to {K}^{\ast}\nu \overline{\nu} \) within the Standard Model (SM), in a model-independent manner, and in a number of new physics (NP) models. Combining new form factor determinations from lattice QCD with light-cone sum rule results and including complete two-loop electroweak corrections to the SM Wilson coefficient, we obtain the SM predictions \( \mathrm{B}\mathrm{R}\left({B}^{+}\to {K}^{+}\nu \overline{\nu}\right)=\left(4.0\pm 0.5\right)\times 1{0}^{-6} \) and \( \mathrm{B}\mathrm{R}\left({B}^0\to {K}^{\ast 0}\nu \overline{\nu}\right)=\left(9.2\pm 1.0\right)\times 1{0}^{-6} \), more precise and more robust than previous estimates. Beyond the SM, we make use of an effective theory with dimension-six operators invariant under the SM gauge symmetries to relate NP effects in \( b\to s\nu \overline{\nu} \) transitions to bsℓ + transitions and use the wealth of experimental data on BK (∗) + and related modes to constrain NP effects in \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \). We then consider several specific NP models, including Z′ models, the MSSM, models with partial compositeness, and leptoquark models, demonstrating that the correlations between \( b\to s\nu \overline{\nu} \) observables among themselves and with B s  → μ + μ and b → sℓ + transitions offer powerful tests of NP with new right-handed couplings and non-MFV interactions.

Keywords

Rare Decays Beyond Standard Model B-Physics Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.J. Buras and J. Girrbach, Towards the Identification of New Physics through Quark Flavour Violating Processes, Rept. Prog. Phys. 77 (2014) 086201 [arXiv:1306.3775] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    G. Isidori and F. Teubert, Status of indirect searches for New Physics with heavy flavour decays after the initial LHC run, Eur. Phys. J. Plus 129 (2014) 40 [arXiv:1402.2844] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    HPQCD collaboration, C. Bouchard, G.P. Lepage, C. Monahan, H. Na and J. Shigemitsu, Rare decay BKℓ + form factors from lattice QCD, Phys. Rev. D 88 (2013) 054509 [arXiv:1306.2384] [INSPIRE].ADSGoogle Scholar
  4. [4]
    R.R. Horgan, Z. Liu, S. Meinel and M. Wingate, Lattice QCD calculation of form factors describing the rare decays BK + and B sϕℓ + , Phys. Rev. D 89 (2014) 094501 [arXiv:1310.3722] [INSPIRE].ADSGoogle Scholar
  5. [5]
    P. Ball and R. Zwicky, New results on Bπ, K, η decay formfactors from light-cone sum rules, Phys. Rev. D 71 (2005) 014015 [hep-ph/0406232] [INSPIRE].ADSGoogle Scholar
  6. [6]
    P. Ball and R. Zwicky, B(D, S) → ρ, ω, K , ϕ decay form-factors from light-cone sum rules revisited, Phys. Rev. D 71 (2005) 014029 [hep-ph/0412079] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Khodjamirian, T. Mannel, A.A. Pivovarov and Y.-M. Wang, Charm-loop effect in BK (∗) + and BK γ, JHEP 09 (2010) 089 [arXiv:1006.4945] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    A. Crivellin and S. Pokorski, Can the differences in the determinations of V ub and V cb be explained by New Physics?, Phys. Rev. Lett. 114 (2015) 011802 [arXiv:1407.1320] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    R. Alonso, B. Grinstein and J. Martin Camalich, SU(2) × U (1) gauge invariance and the shape of new physics in rare B decays, Phys. Rev. Lett. 113 (2014) 241802 [arXiv:1407.7044] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    G. Hiller and M. Schmaltz, R K and future bsℓℓ physics beyond the standard model opportunities, Phys. Rev. D 90 (2014) 054014 [arXiv:1408.1627] [INSPIRE].ADSGoogle Scholar
  11. [11]
    LHCb collaboration, Measurement of Form-Factor-Independent Observables in the Decay B 0K ∗0 μ + μ , Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    S. Descotes-Genon, J. Matias and J. Virto, Understanding the BK μ + μ Anomaly, Phys. Rev. D 88 (2013) 074002 [arXiv:1307.5683] [INSPIRE].ADSGoogle Scholar
  13. [13]
    W. Altmannshofer and D.M. Straub, New physics in BK μμ?, Eur. Phys. J. C 73 (2013) 2646 [arXiv:1308.1501] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    F. Beaujean, C. Bobeth and D. van Dyk, Comprehensive Bayesian analysis of rare (semi)leptonic and radiative B decays, Eur. Phys. J. C 74 (2014) 2897 [arXiv:1310.2478] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    J. Lyon and R. Zwicky, Resonances gone topsy turvy - the charm of QCD or new physics in bsℓ + ?,arXiv:1406.0566[INSPIRE].
  16. [16]
    W. Altmannshofer and D.M. Straub, State of new physics in bs transitions, arXiv:1411.3161 [INSPIRE].
  17. [17]
    W. Altmannshofer, A.J. Buras, D.M. Straub and M. Wick, New strategies for New Physics search in \( B\to {K}^{\ast}\nu \overline{\nu} \) , \( B\to K\nu \overline{\nu} \) and \( B\to {X}_s\nu \overline{\nu} \) decays, JHEP 04 (2009) 022 [arXiv:0902.0160] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    A.J. Buras, K. Gemmler and G. Isidori, Quark flavour mixing with right-handed currents: an effective theory approach, Nucl. Phys. B 843 (2011) 107 [arXiv:1007.1993] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    A.J. Buras, F. De Fazio and J. Girrbach, The Anatomy of Zand Z with Flavour Changing Neutral Currents in the Flavour Precision Era, JHEP 02 (2013) 116 [arXiv:1211.1896] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    A.J. Buras and J. Girrbach, Left-handed Zand Z FCNC quark couplings facing new b + μ data, JHEP 12 (2013) 009 [arXiv:1309.2466] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    A.J. Buras, F. De Fazio, J. Girrbach and M.V. Carlucci, The Anatomy of Quark Flavour Observables in 331 Models in the Flavour Precision Era, JHEP 02 (2013) 023 [arXiv:1211.1237] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    D.M. Straub, Anatomy of flavour-changing Z couplings in models with partial compositeness, JHEP 08 (2013) 108 [arXiv:1302.4651] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    A.J. Buras, F. De Fazio and J. Girrbach, 331 models facing new b + μ data, JHEP 02 (2014) 112 [arXiv:1311.6729] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    A.J. Buras, F. De Fazio and J. Girrbach-Noe, Z-Zmixing and Z-mediated FCNCs in SU(3)C × SU(3)L × U (1)X models, JHEP 08 (2014) 039 [arXiv:1405.3850] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    P. Biancofiore, P. Colangelo, F. De Fazio and E. Scrimieri, Exclusive \( b\to s\nu \overline{\nu} \) induced transitions in RS c model, arXiv:1408.5614 [INSPIRE].
  26. [26]
    P. Colangelo, F. De Fazio, P. Santorelli and E. Scrimieri, Rare \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) decays at B factories, Phys. Lett. B 395 (1997) 339 [hep-ph/9610297] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    G. Buchalla, G. Hiller and G. Isidori, Phenomenology of nonstandard Z couplings in exclusive semileptonic bs transitions, Phys. Rev. D 63 (2000) 014015 [hep-ph/0006136] [INSPIRE].ADSGoogle Scholar
  28. [28]
    G. Buchalla and A.J. Buras, QCD corrections to rare K and B decays for arbitrary top quark mass, Nucl. Phys. B 400 (1993) 225 [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    M. Misiak and J. Urban, QCD corrections to FCNC decays mediated by Z penguins and W boxes, Phys. Lett. B 451 (1999) 161 [hep-ph/9901278] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    G. Buchalla and A.J. Buras, The rare decays \( K\to \pi \nu \overline{\nu} \) , \( B\to X\nu \overline{\nu} \) and B + : An Update, Nucl. Phys. B 548 (1999) 309 [hep-ph/9901288] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    J. Brod, M. Gorbahn and E. Stamou, Two-Loop Electroweak Corrections for the \( K\to \pi \nu \overline{\nu} \) Decays, Phys. Rev. D 83 (2011) 034030 [arXiv:1009.0947] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Bharucha, D. Straub and R. Zwicky, BV ℓ + in the Standard Model from Light-Cone Sum Rules, in preparation, Edinburgh/14/17, TUM-HEP-957/14.Google Scholar
  33. [33]
    Particle Data Group collaboration, K. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001.Google Scholar
  34. [34]
    UTfit collaboration, M. Bona et al., The Unitarity Triangle Fit in the Standard Model and Hadronic Parameters from Lattice QCD: A Reappraisal after the Measurements of ΔM s and BR(Bτν τ ), JHEP 10 (2006) 081 [hep-ph/0606167] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    UTfit collaboration, http://www.utfit.org.
  36. [36]
    G. Hiller and R. Zwicky, (A)symmetries of weak decays at and near the kinematic endpoint, JHEP 03 (2014) 042 [arXiv:1312.1923] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    M. Bartsch, M. Beylich, G. Buchalla and D.-N. Gao, Precision Flavour Physics with \( B\to K\nu \overline{\nu} \) and BKl + l , JHEP 11 (2009) 011 [arXiv:0909.1512] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    P. Ball, G.W. Jones and R. Zwicky, BV γ beyond QCD factorisation, Phys. Rev. D 75 (2007) 054004 [hep-ph/0612081] [INSPIRE].ADSGoogle Scholar
  39. [39]
    W. Altmannshofer et al., Symmetries and Asymmetries of BK μ + μ Decays in the Standard Model and Beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    BaBar collaboration, J.P. Lees et al., Search for \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) and invisible quarkonium decays, Phys. Rev. D 87 (2013) 112005 [arXiv:1303.7465] [INSPIRE].ADSGoogle Scholar
  41. [41]
    Belle collaboration, O. Lutz et al., Search for \( B\to {h}^{\left(\ast \right)}\nu \overline{\nu} \) with the full Belle Υ(4S) data sample, Phys. Rev. D 87 (2013) 111103 [arXiv:1303.3719] [INSPIRE].Google Scholar
  42. [42]
    T. Aushev et al., Physics at Super B Factory, arXiv:1002.5012 [INSPIRE].
  43. [43]
    K. Schmidt-Hoberg, F. Staub and M.W. Winkler, Constraints on light mediators: confronting dark matter searches with B physics, Phys. Lett. B 727 (2013) 506 [arXiv:1310.6752] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    W. Altmannshofer, P. Paradisi and D.M. Straub, Model-Independent Constraints on New Physics in bsγ Transitions, JHEP 04 (2012) 008 [arXiv:1111.1257] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    W. Altmannshofer and D.M. Straub, Cornering New Physics in bs Transitions, JHEP 08 (2012) 121 [arXiv:1206.0273] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    E949 collaboration, A.V. Artamonov et al., New measurement of the \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    A.J. Buras and R. Fleischer, Bounds on the unitarity triangle, sin 2β and \( K\to \nu \overline{\nu} \) in models with minimal flavor violation, Phys. Rev. D 64 (2001) 115010 [hep-ph/0104238] [INSPIRE].ADSGoogle Scholar
  50. [50]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    C. Bobeth and U. Haisch, New Physics in \( {\varGamma}_{12}^s:\left(\overline{s}b\right)\left(\overline{\tau}\tau \right) \) Operators, Acta Phys. Polon. B 44 (2013) 127 [arXiv:1109.1826] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    BaBar collaboration, J.P. Lees et al., Measurement of the BX s l + l branching fraction and search for direct CP-violation from a sum of exclusive final states, Phys. Rev. Lett. 112 (2014) 211802 [arXiv:1312.5364] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    LHCb collaboration, Search for the lepton-flavor violating decays B s0 → e ± μ and B 0e ± μ , Phys. Rev. Lett. 111 (2013) 141801 [arXiv:1307.4889] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    A.J. Buras, D. Buttazzo, J. Girrbach-Noe and R. Knegjens, Can we reach the Zeptouniverse with rare K and B s,d decays?, JHEP 11 (2014) 121 [arXiv:1408.0728] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    L3 collaboration, M. Acciarri et al., Search for manifestations of new physics in fermion pair production at LEP, Phys. Lett. B 489 (2000) 81 [hep-ex/0005028] [INSPIRE].ADSGoogle Scholar
  56. [56]
    OPAL collaboration, G. Abbiendi et al., Tests of the standard model and constraints on new physics from measurements of fermion pair production at 189 GeV to 209 GeV at LEP, Eur. Phys. J. C 33 (2004) 173 [hep-ex/0309053] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in L μL τ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Blanke, A.J. Buras, B. Duling, K. Gemmler and S. Gori, Rare K and B Decays in a Warped Extra Dimension with Custodial Protection, JHEP 03 (2009) 108 [arXiv:0812.3803] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor Physics in the Randall-Sundrum Model: II. Tree-Level Weak-Interaction Processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    K. Agashe, Relaxing Constraints from Lepton Flavor Violation in 5D Flavorful Theories, Phys. Rev. D 80 (2009) 115020 [arXiv:0902.2400] [INSPIRE].ADSGoogle Scholar
  61. [61]
    M. Papucci, K. Sakurai, A. Weiler and L. Zeune, Fastlim: a fast LHC limit calculator, Eur. Phys. J. C 74 (2014) 3163 [arXiv:1402.0492] [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    A. Crivellin et al., SUSYFLAVOR v2: A Computational tool for FCNC and CP-violating processes in the MSSM, Comput. Phys. Commun. 184 (2013) 1004 [arXiv:1203.5023] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    W. Buchmüller, R. Ruckl and D. Wyler, Leptoquarks in Lepton - Quark Collisions, Phys. Lett. B 191 (1987) 442 [Erratum ibid. B 448 (1999) 320] [INSPIRE].
  66. [66]
    P. Ball and R. Zwicky, Operator relations for SU(3) breaking contributions to K and K distribution amplitudes, JHEP 02 (2006) 034 [hep-ph/0601086] [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    M. Artuso et al., B, D and K decays, Eur. Phys. J. C 57 (2008) 309 [arXiv:0801.1833] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Andrzej J. Buras
    • 1
    • 2
  • Jennifer Girrbach-Noe
    • 1
    • 2
  • Christoph Niehoff
    • 3
  • David M. Straub
    • 3
  1. 1.TUM Institute for Advanced StudyGarchingGermany
  2. 2.Physik DepartmentTUMGarchingGermany
  3. 3.Excellence Cluster UniverseTUMGarchingGermany

Personalised recommendations