Journal of High Energy Physics

, 2015:181 | Cite as

Prospects for observing charginos and neutralinos at a 100 TeV proton-proton collider

  • Bobby S. Acharya
  • Krzysztof Bożek
  • Chakrit Pongkitivanichkul
  • Kazuki Sakurai
Open Access
Regular Article - Theoretical Physics


We investigate the prospects for discovering charginos and neutralinos at a future pp collider with \( \sqrt{s} \) = 100 TeV. We focus on models where squarks and sleptons are decoupled — as motivated by the LHC data. Our initial study is based on models where Higgsinos form the main component of the LSP and W -inos compose the heavier chargino states (M 2 > μ), though it is straightforward to consider the reverse situation also. We show that in such scenarios W-inos decay into W ±, Z and h plus neutralinos almost universally. In the WZ channel we compare signal and background in various kinematical distributions. We design simple but effective signal regions for the trilepton channel and evaluate discovery reach and exclusion limits. Assuming 3000 fb−1 of integrated luminosity, W-inos could be discovered (excluded) up to 1.1 (1.8) TeV if the spectrum is not compressed.


Supersymmetry Phenomenology Hadronic Colliders 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].Google Scholar
  3. [3]
    ATLAS collaboration, Search for Supersymmetry at the high luminosity LHC with the ATLAS experiment, ATL-PHYS-PUB-2014-010 (2014).
  4. [4]
    T. Cohen et al., SUSY Simplified Models at 14, 33 and 100 TeV Proton Colliders, JHEP 04 (2014) 117 [arXiv:1311.6480] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    T. Andeen, C. Bernard, K. Black, T. Childres, L. Dell’Asta and N. Vignaroli, Sensitivity to the Single Production of Vector-Like Quarks at an Upgraded Large Hadron Collider, arXiv:1309.1888 [INSPIRE].
  6. [6]
    L. Apanasevich, S. Upadhyay, N. Varelas, D. Whiteson and F. Yu, Sensitivity of potential future pp colliders to quark compositeness, arXiv:1307.7149 [INSPIRE].
  7. [7]
    D. Stolarski, Reach in All Hadronic Stop Decays: A Snowmass White Paper, arXiv:1309.1514 [INSPIRE].
  8. [8]
    F. Yu, Di-jet resonances at future hadron colliders: A Snowmass whitepaper, arXiv:1308.1077 [INSPIRE].
  9. [9]
    N. Zhou, D. Berge, L. Wang, D. Whiteson and T. Tait, Sensitivity of future collider facilities to WIMP pair production via effective operators and light mediators, arXiv:1307.5327 [INSPIRE].
  10. [10]
    S. Jung and J.D. Wells, Gaugino physics of split supersymmetry spectra at the LHC and future proton colliders, Phys. Rev. D 89 (2014) 075004 [arXiv:1312.1802] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Fowlie and M. Raidal, Prospects for constrained supersymmetry at \( \sqrt{s} \) = 33 TeV and \( \sqrt{s} \) = 100 TeV proton-proton super-colliders, Eur. Phys. J. C 74 (2014) 2948 [arXiv:1402.5419] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    S.A.R. Ellis, G.L. Kane and B. Zheng, Superpartners at LHC and Future Colliders: Predictions from Constrained Compactified M-theory, arXiv:1408.1961 [INSPIRE].
  13. [13]
    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    M. Cirelli, F. Sala and M. Taoso, Wino-like Minimal Dark Matter and future colliders, JHEP 10 (2014) 033 [Erratum ibid. 01 (2015) 041] [arXiv:1407.7058] [INSPIRE].
  15. [15]
    D. Curtin, P. Meade and C.-T. Yu, Testing Electroweak Baryogenesis with Future Colliders, JHEP 11 (2014) 127 [arXiv:1409.0005] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    B.S. Acharya, K. Bobkov, G.L. Kane, P. Kumar and J. Shao, Explaining the Electroweak Scale and Stabilizing Moduli in M-theory, Phys. Rev. D 76 (2007) 126010 [hep-th/0701034] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G 2 -MSSM: An M-theory motivated model of Particle Physics, Phys. Rev. D 78 (2008) 065038 [arXiv:0801.0478] [INSPIRE].ADSGoogle Scholar
  21. [21]
    B.S. Acharya, G. Kane and P. Kumar, Compactified String TheoriesGeneric Predictions for Particle Physics, Int. J. Mod. Phys. A 27 (2012) 1230012 [arXiv:1204.2795] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].
  24. [24]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    S. Jung, Resolving the existence of Higgsinos in the LHC inverse problem, JHEP 06 (2014) 111 [arXiv:1404.2691] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].ADSGoogle Scholar
  28. [28]
    H. Baer, V. Barger, A. Lessa, W. Sreethawong and X. Tata, Wh plus missing-E T signature from gaugino pair production at the LHC, Phys. Rev. D 85 (2012) 055022 [arXiv:1201.2949] [INSPIRE].ADSGoogle Scholar
  29. [29]
    T. Han, S. Padhi and S. Su, Electroweakinos in the Light of the Higgs Boson, Phys. Rev. D 88 (2013) 115010 [arXiv:1309.5966] [INSPIRE].ADSGoogle Scholar
  30. [30]
    D. Ghosh, M. Guchait and D. Sengupta, Higgs Signal in Chargino-Neutralino Production at the LHC, Eur. Phys. J. C 72 (2012) 2141 [arXiv:1202.4937] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    P. Byakti and D. Ghosh, Magic Messengers in Gauge Mediation and signal for 125 GeV boosted Higgs boson, Phys. Rev. D 86 (2012) 095027 [arXiv:1204.0415] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Papaefstathiou, K. Sakurai and M. Takeuchi, Higgs boson to di-tau channel in Chargino-Neutralino searches at the LHC, JHEP 08 (2014) 176 [arXiv:1404.1077] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    J. Anderson et al., Snowmass Energy Frontier Simulations, arXiv:1309.1057 [INSPIRE].
  34. [34]
    P. Meade and M. Reece, BRIDGE: Branching ratio inquiry/decay generated events, hep-ph/0703031 [INSPIRE].
  35. [35]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Gori, S. Jung, L.-T. Wang and J.D. Wells, Prospects for Electroweakino Discovery at a 100 TeV Hadron Collider, JHEP 12 (2014) 108 [arXiv:1410.6287] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Bobby S. Acharya
    • 1
    • 2
  • Krzysztof Bożek
    • 1
  • Chakrit Pongkitivanichkul
    • 1
  • Kazuki Sakurai
    • 1
  1. 1.Theoretical Particle Physics & Cosmology Group, Department of PhysicsKing’s College LondonLondonUnited Kingdom
  2. 2.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations