Journal of High Energy Physics

, 2015:156 | Cite as

\( \mathcal{N} \) =2 SUSY Abelian Higgs model with hidden sector and BPS equations

  • Paola Arias
  • Edwin Ireson
  • Carlos Núñez
  • Fidel Schaposnik
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper we study a system inspired on certain SUSY breaking models and on more recent Dark Matter scenarios. In our set-up, two Abelian gauge fields interact via an operator that mixes their kinetic terms. We find the extended Supersymmetric version of this system, that also generates a Higgs portal type of interaction. We obtain and study both analytically and numerically, the equations defining topologically stable string-like objects. We check our results using two different approaches.

Keywords

Extended Supersymmetry Solitons Monopoles and Instantons 

References

  1. [1]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
  3. [3]
    K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    L.B. Okun, Limits of electrodynamics: paraphotons?, Sov. Phys. JETP 56 (1982) 502 [Zh. Eksp. Teor. Fiz. 83 (1982) 892] [INSPIRE].
  5. [5]
    P. Galison and A. Manohar, Two Zs or not two Zs?, Phys. Lett. B 136 (1984) 279 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    T. Vachaspati, Dark strings, Phys. Rev. D 80 (2009) 063502 [arXiv:0902.1764] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    B. Hartmann and F. Arbabzadah, Cosmic strings interacting with dark strings, JHEP 07 (2009) 068 [arXiv:0904.4591] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    Y. Brihaye and B. Hartmann, The effect of dark strings on semilocal strings, Phys. Rev. D 80 (2009) 123502 [arXiv:0907.3233] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    J.M. Hyde, A.J. Long and T. Vachaspati, Dark strings and their couplings to the standard model, Phys. Rev. D 89 (2014) 065031 [arXiv:1312.4573] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A.J. Long, J.M. Hyde and T. Vachaspati, Cosmic strings in hidden sectors: 1. Radiation of standard model particles, JCAP 09 (2014) 030 [arXiv:1405.7679] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    A.J. Long and T. Vachaspati, Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures, JCAP 12 (2014) 040 [arXiv:1409.6979] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    A.E. Nelson and J. Scholtz, Dark light, dark matter and the misalignment mechanism, Phys. Rev. D 84 (2011) 103501 [arXiv:1105.2812] [INSPIRE]ADSGoogle Scholar
  17. [17]
    P. Arias et al., WISPy cold dark matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    D.E. Morrissey and A.P. Spray, New limits on light hidden sectors from fixed-target experiments, JHEP 06 (2014) 083 [arXiv:1402.4817] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    P. Arias and F.A. Schaposnik, Vortex solutions of an Abelian Higgs model with visible and hidden sectors, JHEP 12 (2014) 011 [arXiv:1407.2634] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    E.B. Bogomol’nyi, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861], reprinted in Solitons and particles, C. Rebbi and G. Soliani eds., World Scientific, Singapore (1984) [INSPIRE].
  21. [21]
    H.J. de Vega and F.A. Schaposnik, A classical vortex solution of the Abelian Higgs model, Phys. Rev. D 14 (1976) 1100, reprinted in Solitons and particles, C. Rebbi and G. Soliani eds., World Scientific, Singapore (1984) [INSPIRE].
  22. [22]
    H.B. Nielsen and P. Olesen, Vortex line models for dual strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    E. Witten and D.I. Olive, Supersymmetry algebras that include topological charges, Phys. Lett. B 78 (1978) 97 [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    J.D. Edelstein, C. Núñez and F. Schaposnik, Supersymmetry and Bogomolnyi equations in the Abelian Higgs model, Phys. Lett. B 329 (1994) 39 [hep-th/9311055] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    J.D. Edelstein, C. Núñez and F.A. Schaposnik, Supergravity and a Bogomolnyi bound in three dimensions, Nucl. Phys. B 458 (1996) 165 [hep-th/9506147] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    J.D. Edelstein, C. Núñez and F.A. Schaposnik, Bogomolnyi bounds and Killing spinors in d = 3 supergravity, Phys. Lett. B 375 (1996) 163 [hep-th/9512117] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    W.H. Press, S.A. Teukolsky and W.V. Vetterlink, Numerical recipes: the art of scientific computing, Cambridge University Press, Cambridge U.K. (1992).Google Scholar
  28. [28]
    J. Hong, Y. Kim and P.Y. Pac, On the multivortex solutions of the Abelian Chern-Simons-Higgs theory, Phys. Rev. Lett. 64 (1990) 2230 [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  29. [29]
    R. Jackiw and E.J. Weinberg, Selfdual Chern-Simons vortices, Phys. Rev. Lett. 64 (1990) 2234 [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  30. [30]
    C.-k. Lee, K.-M. Lee and E.J. Weinberg, Supersymmetry and selfdual Chern-Simons systems, Phys. Lett. B 243 (1990) 105 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    L.F. Cugliandolo, G. Lozano, M.V. Manias and F.A. Schaposnik, Bogomolnyi equations for non-Abelian Chern-Simons Higgs theories, Mod. Phys. Lett. A 6 (1991) 479 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    G.V. Dunne, Aspects of Chern-Simons theory, hep-th/9902115 [INSPIRE].
  33. [33]
    J.H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078 [hep-th/0411077] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    F.A. Schaposnik, Vortices, hep-th/0611028 [INSPIRE].
  35. [35]
    M. Shifman and A. Yung, Supersymmetric solitons, Cambridge University Press, Cambridge U.K. (2009) [INSPIRE].CrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Paola Arias
    • 1
  • Edwin Ireson
    • 2
  • Carlos Núñez
    • 2
  • Fidel Schaposnik
    • 3
  1. 1.Departamento de FísicaUniversidad de Santiago de ChileSantiagoChile
  2. 2.Department of PhysicsSwansea UniversitySwanseaU.K.
  3. 3.Departamento de FísicaUniversidad Nacional de La Plata/IFLPLa PlataArgentina

Personalised recommendations