Advertisement

Journal of High Energy Physics

, 2015:156 | Cite as

\( \mathcal{N} \) =2 SUSY Abelian Higgs model with hidden sector and BPS equations

  • Paola Arias
  • Edwin Ireson
  • Carlos Núñez
  • Fidel Schaposnik
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper we study a system inspired on certain SUSY breaking models and on more recent Dark Matter scenarios. In our set-up, two Abelian gauge fields interact via an operator that mixes their kinetic terms. We find the extended Supersymmetric version of this system, that also generates a Higgs portal type of interaction. We obtain and study both analytically and numerically, the equations defining topologically stable string-like objects. We check our results using two different approaches.

Keywords

Extended Supersymmetry Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
  3. [3]
    K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    L.B. Okun, Limits of electrodynamics: paraphotons?, Sov. Phys. JETP 56 (1982) 502 [Zh. Eksp. Teor. Fiz. 83 (1982) 892] [INSPIRE].
  5. [5]
    P. Galison and A. Manohar, Two Zs or not two Zs?, Phys. Lett. B 136 (1984) 279 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    T. Vachaspati, Dark strings, Phys. Rev. D 80 (2009) 063502 [arXiv:0902.1764] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    B. Hartmann and F. Arbabzadah, Cosmic strings interacting with dark strings, JHEP 07 (2009) 068 [arXiv:0904.4591] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    Y. Brihaye and B. Hartmann, The effect of dark strings on semilocal strings, Phys. Rev. D 80 (2009) 123502 [arXiv:0907.3233] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    J.M. Hyde, A.J. Long and T. Vachaspati, Dark strings and their couplings to the standard model, Phys. Rev. D 89 (2014) 065031 [arXiv:1312.4573] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A.J. Long, J.M. Hyde and T. Vachaspati, Cosmic strings in hidden sectors: 1. Radiation of standard model particles, JCAP 09 (2014) 030 [arXiv:1405.7679] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    A.J. Long and T. Vachaspati, Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures, JCAP 12 (2014) 040 [arXiv:1409.6979] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    A.E. Nelson and J. Scholtz, Dark light, dark matter and the misalignment mechanism, Phys. Rev. D 84 (2011) 103501 [arXiv:1105.2812] [INSPIRE]ADSGoogle Scholar
  17. [17]
    P. Arias et al., WISPy cold dark matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    D.E. Morrissey and A.P. Spray, New limits on light hidden sectors from fixed-target experiments, JHEP 06 (2014) 083 [arXiv:1402.4817] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    P. Arias and F.A. Schaposnik, Vortex solutions of an Abelian Higgs model with visible and hidden sectors, JHEP 12 (2014) 011 [arXiv:1407.2634] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    E.B. Bogomol’nyi, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861], reprinted in Solitons and particles, C. Rebbi and G. Soliani eds., World Scientific, Singapore (1984) [INSPIRE].
  21. [21]
    H.J. de Vega and F.A. Schaposnik, A classical vortex solution of the Abelian Higgs model, Phys. Rev. D 14 (1976) 1100, reprinted in Solitons and particles, C. Rebbi and G. Soliani eds., World Scientific, Singapore (1984) [INSPIRE].
  22. [22]
    H.B. Nielsen and P. Olesen, Vortex line models for dual strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    E. Witten and D.I. Olive, Supersymmetry algebras that include topological charges, Phys. Lett. B 78 (1978) 97 [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    J.D. Edelstein, C. Núñez and F. Schaposnik, Supersymmetry and Bogomolnyi equations in the Abelian Higgs model, Phys. Lett. B 329 (1994) 39 [hep-th/9311055] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    J.D. Edelstein, C. Núñez and F.A. Schaposnik, Supergravity and a Bogomolnyi bound in three dimensions, Nucl. Phys. B 458 (1996) 165 [hep-th/9506147] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    J.D. Edelstein, C. Núñez and F.A. Schaposnik, Bogomolnyi bounds and Killing spinors in d = 3 supergravity, Phys. Lett. B 375 (1996) 163 [hep-th/9512117] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    W.H. Press, S.A. Teukolsky and W.V. Vetterlink, Numerical recipes: the art of scientific computing, Cambridge University Press, Cambridge U.K. (1992).Google Scholar
  28. [28]
    J. Hong, Y. Kim and P.Y. Pac, On the multivortex solutions of the Abelian Chern-Simons-Higgs theory, Phys. Rev. Lett. 64 (1990) 2230 [INSPIRE].CrossRefADSzbMATHMathSciNetGoogle Scholar
  29. [29]
    R. Jackiw and E.J. Weinberg, Selfdual Chern-Simons vortices, Phys. Rev. Lett. 64 (1990) 2234 [INSPIRE].CrossRefADSzbMATHMathSciNetGoogle Scholar
  30. [30]
    C.-k. Lee, K.-M. Lee and E.J. Weinberg, Supersymmetry and selfdual Chern-Simons systems, Phys. Lett. B 243 (1990) 105 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    L.F. Cugliandolo, G. Lozano, M.V. Manias and F.A. Schaposnik, Bogomolnyi equations for non-Abelian Chern-Simons Higgs theories, Mod. Phys. Lett. A 6 (1991) 479 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    G.V. Dunne, Aspects of Chern-Simons theory, hep-th/9902115 [INSPIRE].
  33. [33]
    J.H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078 [hep-th/0411077] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    F.A. Schaposnik, Vortices, hep-th/0611028 [INSPIRE].
  35. [35]
    M. Shifman and A. Yung, Supersymmetric solitons, Cambridge University Press, Cambridge U.K. (2009) [INSPIRE].CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Paola Arias
    • 1
  • Edwin Ireson
    • 2
  • Carlos Núñez
    • 2
  • Fidel Schaposnik
    • 3
  1. 1.Departamento de FísicaUniversidad de Santiago de ChileSantiagoChile
  2. 2.Department of PhysicsSwansea UniversitySwanseaU.K.
  3. 3.Departamento de FísicaUniversidad Nacional de La Plata/IFLPLa PlataArgentina

Personalised recommendations