Advertisement

Journal of High Energy Physics

, 2015:142 | Cite as

Explaining the lepton non-universality at the LHCb and CMS within a unified framework

  • Sanjoy Biswas
  • Debtosh ChowdhuryEmail author
  • Sangeun Han
  • Seung J. Lee
Open Access
Regular Article - Experimental Physics

Abstract

The recent results from the LHCb in the context of (B +K + ll) decay and the CMS analysis in the context of right handed W-boson (W R ) search show a 2.6σ and a 2.8σ deviations from the Standard Model expectations respectively. In this work, we address these two seemingly uncorrelated results in the context of \( \mathrm{\mathcal{R}} \)-parity violating supersymmetry. We found that a particular combination of LQD c -type operators which successfully explain the LHCb result, can also accommodate the CMS excess in the eejj channel of the W R search.

Keywords

Supersymmetry Hadron-Hadron Scattering Beyond Standard Model B physics Rare decay 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    G. Hiller and F. Krüger, More model independent analysis of bs processes, Phys. Rev. D 69 (2004) 074020 [hep-ph/0310219] [INSPIRE].ADSGoogle Scholar
  3. [3]
    CMS collaboration, Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 74 (2014) 3149 [arXiv:1407.3683] [INSPIRE].Google Scholar
  4. [4]
    CMS collaboration, Search for pair-production of first generation scalar leptoquarks in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-12-041, CERN, Geneva Switzerland (2012).
  5. [5]
    G. Hiller and M. Schmaltz, R K and future bsℓℓ physics beyond the standard model opportunities, Phys. Rev. D 90 (2014) 054014 [arXiv:1408.1627] [INSPIRE].ADSGoogle Scholar
  6. [6]
    D. Ghosh, M. Nardecchia and S.A. Renner, Hint of lepton flavour non-universality in B meson decays, JHEP 12 (2014) 131 [arXiv:1408.4097] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    Y. Bai and J. Berger, Coloron-assisted leptoquarks at the LHC, arXiv:1407.4466 [INSPIRE].
  8. [8]
    B.A. Dobrescu and A. Martin, Interpretations of anomalous LHC events with electrons and jets, arXiv:1408.1082 [INSPIRE].
  9. [9]
    J.A. Aguilar-Saavedra and F.R. Joaquim, Closer look at the possible CMS signal of a new gauge boson, Phys. Rev. D 90 (2014) 115010 [arXiv:1408.2456] [INSPIRE].ADSGoogle Scholar
  10. [10]
    F.F. Deppisch, T.E. Gonzalo, S. Patra, N. Sahu and U. Sarkar, Signal of right-handed charged gauge bosons at the LHC?, Phys. Rev. D 90 (2014) 053014 [arXiv:1407.5384] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Heikinheimo, M. Raidal and C. Spethmann, Testing right-handed currents at the LHC, Eur. Phys. J. C 74 (2014) 3107 [arXiv:1407.6908] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    B. Allanach, S. Biswas, S. Mondal and M. Mitra, Explaining a CMS eejj excess with R-parity violating supersymmetry and implications for neutrinoless double beta decay, Phys. Rev. D 91 (2015) 011702 [arXiv:1408.5439] [INSPIRE].ADSGoogle Scholar
  13. [13]
    E.J. Chun, S. Jung, H.M. Lee and S.C. Park, Stop and sbottom LSP with R-parity violation, Phys. Rev. D 90 (2014) 115023 [arXiv:1408.4508] [INSPIRE].ADSGoogle Scholar
  14. [14]
    L.J. Hall and M. Suzuki, Explicit R-parity breaking in supersymmetric models, Nucl. Phys. B 231 (1984) 419 [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    G.G. Ross and J.W.F. Valle, Supersymmetric models without R-parity, Phys. Lett. B 151 (1985) 375 [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    V.D. Barger, G.F. Giudice and T. Han, Some new aspects of supersymmetry R-parity violating interactions, Phys. Rev. D 40 (1989) 2987 [INSPIRE].ADSGoogle Scholar
  17. [17]
    H.K. Dreiner, An introduction to explicit R-parity violation, Adv. Ser. Direct. High Energy Phys. 21 (2010) 565 [hep-ph/9707435] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    G. Bhattacharyya, A brief review of R-parity violating couplings, hep-ph/9709395 [INSPIRE].
  19. [19]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    E. Nikolidakis and C. Smith, Minimal flavor violation, seesaw and R-parity, Phys. Rev. D 77 (2008) 015021 [arXiv:0710.3129] [INSPIRE].ADSGoogle Scholar
  21. [21]
    C. Csáki, Y. Grossman and B. Heidenreich, MFV SUSY: a natural theory for R-parity violation, Phys. Rev. D 85 (2012) 095009 [arXiv:1111.1239] [INSPIRE].ADSGoogle Scholar
  22. [22]
    C. Csáki, E. Kuflik and T. Volansky, Dynamical R-parity violation, Phys. Rev. Lett. 112 (2014) 131801 [arXiv:1309.5957] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    H.K. Dreiner and M. Thormeier, Supersymmetric Froggatt-Nielsen models with baryon and lepton number violation, Phys. Rev. D 69 (2004) 053002 [hep-ph/0305270] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Monteux, Natural, R-parity violating supersymmetry and horizontal flavor symmetries, Phys. Rev. D 88 (2013) 045029 [arXiv:1305.2921] [INSPIRE].ADSGoogle Scholar
  25. [25]
    Y. Kao and T. Takeuchi, Constraints on R-parity violation from recent Belle/Babar data, arXiv:0909.0042 [INSPIRE].
  26. [26]
    Y. Kao and T. Takeuchi, Single-coupling bounds on R-parity violating supersymmetry, an update, arXiv:0910.4980 [INSPIRE].
  27. [27]
    G. Bhattacharyya and A. Datta, Effects of R-parity violation on direct CP-violation in B decays and extraction of gamma, Phys. Rev. Lett. 83 (1999) 2300 [hep-ph/9903490] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-hadron, C-hadron and τ-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  29. [29]
    B. de Carlos and P.L. White, R-parity violation and quark flavor violation, Phys. Rev. D 55 (1997) 4222 [hep-ph/9609443] [INSPIRE].ADSGoogle Scholar
  30. [30]
    H.K. Dreiner, K. Nickel and F. Staub, \( {B}_{s,d}^0\to\ \mu \overline{\mu} \) and BX s γ in the R-parity violating MSSM, Phys. Rev. D 88 (2013) 115001 [arXiv:1309.1735] [INSPIRE].ADSGoogle Scholar
  31. [31]
    ALEPH collaboration, S. Schael et al., Fermion pair production in e + e collisions at 189209 GeV and constraints on physics beyond the standard model, Eur. Phys. J. C 49 (2007) 411 [hep-ex/0609051] [INSPIRE].ADSGoogle Scholar
  32. [32]
    H1 and ZEUS collaboration, R. Ciesielski, Search for leptoquarks and contact interactions at HERA, PoS(EPS-HEP 2009)269 [INSPIRE].
  33. [33]
    D0 collaboration, V. Abazov et al., Search for quark-lepton compositeness in the dimuon channel with 400 pb−1 D0 Run II data, D0 note 4922-CONF, Fermilab, Batavia U.S.A. (2005).Google Scholar
  34. [34]
    D0 collaboration, V. Abazov et al., Search for quark-electron compositeness in e + e production, D0 note 4552-CONF, Fermilab, Batavia U.S.A. (2004).Google Scholar
  35. [35]
    M. Carpentier and S. Davidson, Constraints on two-lepton, two quark operators, Eur. Phys. J. C 70 (2010) 1071 [arXiv:1008.0280] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    V.D. Barger, K.-M. Cheung, K. Hagiwara and D. Zeppenfeld, Global study of electron-quark contact interactions, Phys. Rev. D 57 (1998) 391 [hep-ph/9707412] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K.-M. Cheung, Constraints on electron quark contact interactions, hep-ph/9807483 [INSPIRE].
  38. [38]
    ZEUS collaboration, J. Breitweg et al., Comparison of ZEUS data with standard model predictions for e + pe + X scattering at high x and Q 2, Z. Phys. C 74 (1997) 207 [hep-ex/9702015] [INSPIRE].Google Scholar
  39. [39]
    H1 collaboration, C. Adloff et al., Observation of events at very high Q 2 in ep collisions at HERA, Z. Phys. C 74 (1997) 191 [hep-ex/9702012] [INSPIRE].Google Scholar
  40. [40]
    C.Y. Prescott et al., Further measurements of parity nonconservation in inelastic electron scattering, Phys. Lett. B 84 (1979) 524 [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    W. Heil et al., Improved limits on the weak, neutral, hadronic axial vector coupling constants from quasielastic scattering of polarized electrons, Nucl. Phys. B 327 (1989) 1 [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    P.A. Souder et al., Measurement of parity violation in the elastic scattering of polarized electrons from 12 C, Phys. Rev. Lett. 65 (1990) 694 [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    CDF collaboration, F. Abe et al., Limits on quark-lepton compositeness scales from dileptons produced in 1.8 TeV pp collisions, Phys. Rev. Lett. 79 (1997) 2198 [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    LEP Electroweak Working Group and SLD Heavy Flavor Group collaborations, D. Abbaneo et al., A combination of preliminary electroweak measurements and constraints on the standard model, CERN-PPE-96-183, CERN, Geneva Switzerland (1996).
  45. [45]
    OPAL collaboration, G. Alexander et al., Measurement of cross-sections and asymmetries in e + e collisions at 130 GeV–140 GeV center-of-mass energy, Phys. Lett. B 376 (1996) 232 [INSPIRE].ADSGoogle Scholar
  46. [46]
    OPAL collaboration, G. Alexander et al., Test of the four fermion contact interaction in e + e collisions at 130 GeV–140 GeV, Phys. Lett. B 387 (1996) 432 [INSPIRE].ADSGoogle Scholar
  47. [47]
    OPAL collaboration, K. Ackerstaff et al., Production of fermion pair events in e + e collisions at 161 GeV center-of-mass energy, Phys. Lett. B 391 (1997) 221 [INSPIRE].ADSGoogle Scholar
  48. [48]
    L3 collaboration, M. Acciarri et al., Measurement of hadron and lepton pair production at 130 GeV < \( \sqrt{s} \) < 140 GeV at LEP, Phys. Lett. B 370 (1996) 195 [INSPIRE].ADSGoogle Scholar
  49. [49]
    L3 collaboration, M. Acciarri et al., Measurement of hadron and lepton pair production at 161 GeV < \( \sqrt{s} \) < 172 GeV at LEP, Phys. Lett. B 407 (1997) 361 [INSPIRE].ADSGoogle Scholar
  50. [50]
    ALEPH collaboration, D. Buskulic et al., Measurement of hadron and lepton pair production from e + e annihilation at center-of-mass energies of 130 GeV and 136 GeV, Phys. Lett. B 378 (1996) 373 [INSPIRE].ADSGoogle Scholar
  51. [51]
    P. Langacker and J. Erler, Unification or compositeness?, hep-ph/9703428 [INSPIRE].
  52. [52]
    CCFR, E744 and E770 collaborations, K.S. McFarland et al., A precision measurement of electroweak parameters in neutrino-nucleon scattering, Eur. Phys. J. C 1 (1998) 509 [hep-ex/9701010] [INSPIRE].ADSGoogle Scholar
  53. [53]
    C. Bobeth, G. Hiller, D. van Dyk and C. Wacker, The decay BKℓ + at low hadronic recoil and model-independent ΔB = 1 constraints, JHEP 01 (2012) 107 [arXiv:1111.2558] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    C. Bobeth, G. Hiller and G. Piranishvili, Angular distributions of \( \overline{B}\to K\overline{\ell}\ell \) decays, JHEP 12 (2007) 040 [arXiv:0709.4174] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    C. Bobeth, G. Hiller and D. van Dyk, General analysis of \( \overline{B}\to {\overline{K}}^{\left(\ast \right)}{\ell}^{+}{\ell}^{-} \) decays at low recoil, Phys. Rev. D 87 (2013) 034016 [arXiv:1212.2321] [INSPIRE].ADSGoogle Scholar
  56. [56]
    LHCb collaboration, Differential branching fraction and angular analysis of the B +K + μ + μ decay, JHEP 02 (2013) 105 [arXiv:1209.4284] [INSPIRE].Google Scholar
  57. [57]
    T. Huber, E. Lunghi, M. Misiak and D. Wyler, Electromagnetic logarithms in \( \overline{B}\to {X}_s{\ell}^{+}{\ell}^{-} \), Nucl. Phys. B 740 (2006) 105 [hep-ph/0512066] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    BaBar collaboration, J.P. Lees et al., Measurement of the BX s + branching fraction and search for direct CP-violation from a sum of exclusive final states, Phys. Rev. Lett. 112 (2014) 211802 [arXiv:1312.5364] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    C. Bobeth et al., B s,d + in the standard model with reduced theoretical uncertainty, Phys. Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    CMS and LHCb collaborations, Combination of results on the rare decays B (s)0 → μ + μ from the CMS and LHCb experiments, CMS-PAS-BPH-13-007, CERN, Geneva Switzerland (2013).
  61. [61]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].Google Scholar
  62. [62]
    R. Alonso, B. Grinstein and J. Martin Camalich, SU(2) × U(1) gauge invariance and the shape of new physics in rare B decays, Phys. Rev. Lett. 113 (2014) 241802 [arXiv:1407.7044] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    S. Descotes-Genon, J. Matias and J. Virto, Understanding the BK * μ + μ anomaly, Phys. Rev. D 88 (2013) 074002 [arXiv:1307.5683] [INSPIRE].ADSGoogle Scholar
  64. [64]
    W. Altmannshofer and D.M. Straub, New physics in BK * μμ?, Eur. Phys. J. C 73 (2013) 2646 [arXiv:1308.1501] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    F. Beaujean, C. Bobeth and D. van Dyk, Comprehensive Bayesian analysis of rare (semi)leptonic and radiative B decays, Eur. Phys. J. C 74 (2014) 2897 [arXiv:1310.2478] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    R.R. Horgan, Z. Liu, S. Meinel and M. Wingate, Calculation of B 0K *0 μ + μ and B s0 → ϕμ + μ observables using form factors from lattice QCD, Phys. Rev. Lett. 112 (2014) 212003 [arXiv:1310.3887] [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    D. Das, G. Hiller, M. Jung and A. Shires, The \( \overline{B}\to \overline{K}\pi \ell \ell \) and \( {\overline{B}}_s\to \overline{K}K\ell \ell \) distributions at low hadronic recoil, JHEP 09 (2014) 109 [arXiv:1406.6681] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    S. Dimopoulos, R. Esmailzadeh, L.J. Hall and G.D. Starkman, Cross-sections for lepton and baryon number violating processes from supersymmetry at \( p\overline{p} \) colliders, Phys. Rev. D 41 (1990) 2099 [INSPIRE].ADSGoogle Scholar
  69. [69]
    J.L. Hewett and T.G. Rizzo, Resonant slepton production at hadron colliders in R-parity violating models, hep-ph/9809525 [INSPIRE].
  70. [70]
    H.K. Dreiner, P. Richardson and M.H. Seymour, Resonant slepton production, hep-ph/9903419 [INSPIRE].
  71. [71]
    H.K. Dreiner, P. Richardson and M.H. Seymour, Resonant slepton production at the LHC, hep-ph/0001224 [INSPIRE].
  72. [72]
    H.K. Dreiner, P. Richardson and M.H. Seymour, Resonant slepton production in hadron hadron collisions, Phys. Rev. D 63 (2001) 055008 [hep-ph/0007228] [INSPIRE].ADSGoogle Scholar
  73. [73]
    B.C. Allanach, M. Guchait and K. Sridhar, Resonant slepton production at the LHC in models with an ultralight gravitino, Phys. Lett. B 586 (2004) 373 [hep-ph/0311254] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    H.K. Dreiner and T. Stefaniak, Bounds on R-parity violation from resonant slepton production at the LHC, Phys. Rev. D 86 (2012) 055010 [arXiv:1201.5014] [INSPIRE].ADSGoogle Scholar
  75. [75]
    B.C. Allanach, C.H. Kom and H. Pas, Large Hadron Collider probe of supersymmetric neutrinoless double beta decay mechanism, Phys. Rev. Lett. 103 (2009) 091801 [arXiv:0902.4697] [INSPIRE].CrossRefADSGoogle Scholar
  76. [76]
    F. Staub, From superpotential to model files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  77. [77]
    F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  78. [78]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].CrossRefADSGoogle Scholar
  79. [79]
    W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].CrossRefADSGoogle Scholar
  80. [80]
    CMS collaboration, Search for narrow resonances using the dijet mass spectrum in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 87 (2013) 114015 [arXiv:1302.4794] [INSPIRE].ADSGoogle Scholar
  81. [81]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].CrossRefADSGoogle Scholar
  82. [82]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].CrossRefADSGoogle Scholar
  83. [83]
    S. Kretzer, H.L. Lai, F.I. Olness and W.K. Tung, Cteq6 parton distributions with heavy quark mass effects, Phys. Rev. D 69 (2004) 114005 [hep-ph/0307022] [INSPIRE].ADSGoogle Scholar
  84. [84]
    CMS collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE].
  85. [85]
    B.C. Allanach, S. Biswas, S. Mondal and M. Mitra, Resonant slepton production yields CMS eejj and ejj missing p T excesses, Phys. Rev. D 91 (2015) 015011 [arXiv:1410.5947] [INSPIRE].ADSGoogle Scholar
  86. [86]
    A.J. Buras, J. Girrbach-Noe, C. Niehoff and D.M. Straub, \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) decays in the standard model and beyond, arXiv:1409.4557 [INSPIRE].

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Sanjoy Biswas
    • 1
    • 2
  • Debtosh Chowdhury
    • 2
    Email author
  • Sangeun Han
    • 3
    • 4
  • Seung J. Lee
    • 3
    • 5
  1. 1.Dipartimento di FisicaUniversità di Roma La SapienzaRomeItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, Sezione di RomaRomeItaly
  3. 3.Department of PhysicsKorea Advanced Institute of Science and TechnologyDaejeonKorea
  4. 4.Center for Theoretical Physics of the UniverseIBSDaejeonKorea
  5. 5.School of PhysicsKorea Institute for Advanced StudySeoulKorea

Personalised recommendations