Advertisement

Journal of High Energy Physics

, 2015:136 | Cite as

Global structure of curves from generalized unitarity cut of three-loop diagrams

  • Jonathan D. Hauenstein
  • Rijun HuangEmail author
  • Dhagash Mehta
  • Yang Zhang
Open Access
Regular Article - Theoretical Physics

Abstract

This paper studies the global structure of algebraic curves defined by generalized unitarity cut of four-dimensional three-loop diagrams with eleven propagators. The global structure is a topological invariant that is characterized by the geometric genus of the algebraic curve. We use the Riemann-Hurwitz formula to compute the geometric genus of algebraic curves with the help of techniques involving convex hull polytopes and numerical algebraic geometry. Some interesting properties of genus for arbitrary loop orders are also explored where computing the genus serves as an initial step for integral or integrand reduction of three-loop amplitudes via an algebraic geometric approach.

Keywords

Scattering Amplitudes Differential and Algebraic Geometry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.M. Brown and R.P. Feynman, Radiative corrections to Compton scattering, Phys. Rev. 85 (1952) 231 [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  2. [2]
    G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    R.G. Stuart, Algebraic reduction of one loop Feynman diagrams to scalar integrals, Comput. Phys. Commun. 48 (1988) 367 [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    R.G. Stuart and A. Gongora, Algebraic reduction of one loop Feynman diagrams to scalar integrals. 2, Comput. Phys. Commun. 56 (1990) 337 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    L.D. Landau, On analytic properties of vertex parts in quantum field theory, Nucl. Phys. 13 (1959) 181.CrossRefzbMATHGoogle Scholar
  7. [7]
    S. Mandelstam, Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. General theory, Phys. Rev. 112 (1958) 1344 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    S. Mandelstam, Analytic properties of transition amplitudes in perturbation theory, Phys. Rev. 115 (1959) 1741 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960) 429.CrossRefADSzbMATHMathSciNetGoogle Scholar
  10. [10]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys. B 467 (1996) 479 [hep-ph/9511336] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    R. Britto, E. Buchbinder, F. Cachazo and B. Feng, One-loop amplitudes of gluons in SQCD, Phys. Rev. D 72 (2005) 065012 [hep-ph/0503132] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett. B 645 (2007) 213 [hep-ph/0609191] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and Reduction to master integrals in d dimensions for one-loop amplitudes, JHEP 03 (2007) 111 [hep-ph/0612277] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e + e to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    R.K. Ellis, W.T. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    W.B. Kilgore, One-loop integral coefficients from generalized unitarity, arXiv:0711.5015 [INSPIRE].
  24. [24]
    W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    S.D. Badger, Direct extraction of one loop rational terms, JHEP 01 (2009) 049 [arXiv:0806.4600] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    J. Gluza, K. Kajda and D.A. Kosower, Towards a basis for planar two-loop integrals, Phys. Rev. D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].ADSGoogle Scholar
  28. [28]
    Y. Zhang, Integrand-level reduction of loop amplitudes by computational algebraic geometry methods, JHEP 09 (2012) 042 [arXiv:1205.5707] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering amplitudes from multivariate polynomial division, Phys. Lett. B 718 (2012) 173 [arXiv:1205.7087] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    S. Badger, H. Frellesvig and Y. Zhang, Hepta-cuts of two-loop scattering amplitudes, JHEP 04 (2012) 055 [arXiv:1202.2019] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    B. Feng and R. Huang, The classification of two-loop integrand basis in pure four-dimension, JHEP 02 (2013) 117 [arXiv:1209.3747] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    R.H.P. Kleiss, I. Malamos, C.G. Papadopoulos and R. Verheyen, Counting to one: reducibility of one- and two-loop amplitudes at the integrand level, JHEP 12 (2012) 038 [arXiv:1206.4180] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    S. Badger, H. Frellesvig and Y. Zhang, An integrand reconstruction method for three-loop amplitudes, JHEP 08 (2012) 065 [arXiv:1207.2976] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Integrand-reduction for two-loop scattering amplitudes through multivariate polynomial division, Phys. Rev. D 87 (2013) 085026 [arXiv:1209.4319] [INSPIRE].ADSGoogle Scholar
  35. [35]
    P. Mastrolia et al., On the one integrand reduction of one- and two-loop scattering amplitudes, PoS(LL2012)028.
  36. [36]
    P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multiloop integrand reduction for dimensionally regulated amplitudes, Phys. Lett. B 727 (2013) 532 [arXiv:1307.5832] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    S. Badger, H. Frellesvig and Y. Zhang, A two-loop five-gluon helicity amplitude in QCD, JHEP 12 (2013) 045 [arXiv:1310.1051] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    H. van Deurzen et al., Multi-leg one-loop massive amplitudes from integrand reduction via laurent expansion, JHEP 03 (2014) 115 [arXiv:1312.6678] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    S. Laporta, Calculation of master integrals by difference equations, Phys. Lett. B 504 (2001) 188 [hep-ph/0102032] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    B. Feng, J. Zhen, R. Huang and K. Zhou, Integral reduction by unitarity method for two-loop amplitudes: a case study, JHEP 06 (2014) 166 [arXiv:1401.6766] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP 06 (2014) 114 [arXiv:1404.2922] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  46. [46]
    D.A. Kosower and K.J. Larsen, Maximal unitarity at two loops, Phys. Rev. D 85 (2012) 045017 [arXiv:1108.1180] [INSPIRE].ADSGoogle Scholar
  47. [47]
    K.J. Larsen, Global poles of the two-loop six-point N = 4 SYM integrand, Phys. Rev. D 86 (2012) 085032 [arXiv:1205.0297] [INSPIRE].ADSGoogle Scholar
  48. [48]
    S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012) 026 [arXiv:1205.0801] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    H. Johansson, D.A. Kosower and K.J. Larsen, Two-loop maximal unitarity with external masses, Phys. Rev. D 87 (2013) 025030 [arXiv:1208.1754] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M. Søgaard, Global residues and two-loop hepta-cuts, JHEP 09 (2013) 116 [arXiv:1306.1496] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    H. Johansson, D.A. Kosower and K.J. Larsen, Maximal unitarity for the four-mass double box, Phys. Rev. D 89 (2014) 125010 [arXiv:1308.4632] [INSPIRE].ADSGoogle Scholar
  52. [52]
    M. Søgaard and Y. Zhang, Multivariate residues and maximal unitarity, JHEP 12 (2013) 008 [arXiv:1310.6006] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    M. Sogaard and Y. Zhang, Unitarity cuts of integrals with doubled propagators, JHEP 07 (2014) 112 [arXiv:1403.2463] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    M. Sogaard and Y. Zhang, Massive nonplanar two-loop maximal unitarity, arXiv:1406.5044 [INSPIRE].
  55. [55]
    R. Huang and Y. Zhang, On genera of curves from high-loop generalized unitarity cuts, JHEP 04 (2013) 080 [arXiv:1302.1023] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    D.J. Bates et al., Numerically solving polynomial systems with Bertini, Software, Environments, and Tools volume 25, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, U.S.A. (2013).Google Scholar
  57. [57]
    D. Mehta, Y.-H. He and J.D. Hauenstein, Numerical algebraic geometry: a new perspective on string and gauge theories, JHEP 07 (2012) 018 [arXiv:1203.4235] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  58. [58]
    R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, U.S.A. (1977).Google Scholar
  59. [59]
    C. Maclean and D. Perrin, Algebraic geometry: an introduction, Universitext, Springer, Germany (2007).Google Scholar
  60. [60]
    D.J. Bates et al., Numerical computation of the genus of an irreducible curve within an algebraic set, J. Pure Appl. Algebra 215 (2011) 1844.CrossRefzbMATHMathSciNetGoogle Scholar
  61. [61]
    J.D. Hauenstein and A.J. Sommese, Membership tests for images of algebraic sets by linear projections, Appl. Math. Comput. 219 (2013) 6809.CrossRefzbMATHMathSciNetGoogle Scholar
  62. [62]
    A.J. Sommese and C.W. Wampler II, The numerical solution of systems of polynomials, World Scientific Publishing Co. Pte. Ltd., Hackensack, U.S.A. (2005).CrossRefzbMATHGoogle Scholar
  63. [63]
    D. Mehta, Numerical polynomial homotopy continuation method and string vacua, Adv. High Energy Phys. 2011 (2011) 263937 [arXiv:1108.1201] [INSPIRE].CrossRefGoogle Scholar
  64. [64]
    J. Hauenstein, Y.-H. He and D. Mehta, Numerical elimination and moduli space of vacua, JHEP 09 (2013) 083 [arXiv:1210.6038] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  65. [65]
    J.D. Hauenstein and C.W. Wampler, Isosingular sets and deflation, Found. Comput. Math. 13 (2013) 371.CrossRefzbMATHMathSciNetGoogle Scholar
  66. [66]
    J.D. Hauenstein, A.J. Sommese and C.W. Wampler, Regeneration homotopies for solving systems of polynomials, Math. Comp. 80 (2011) 345.CrossRefzbMATHMathSciNetGoogle Scholar
  67. [67]
    J.D. Hauenstein, A.J. Sommese and C.W. Wampler, Regenerative cascade homotopies for solving polynomial systems, Appl. Math. Comput. 218 (2011) 1240.CrossRefzbMATHMathSciNetGoogle Scholar
  68. [68]
    D.J. Bates et al., A numerical local dimensions test for points on the solution set of a system of polynomial equations, SIAM J. Numer. Anal. 47 (2009) 3608.CrossRefzbMATHMathSciNetGoogle Scholar
  69. [69]
    A.J. Sommese, J. Verschelde and C.W. Wampler, Symmetric functions applied to decomposing solution sets of polynomial systems, SIAM J. Numer. Anal. 40 (2002) 2026.CrossRefzbMATHMathSciNetGoogle Scholar
  70. [70]
    J.D. Hauenstein and C.W. Wampler, Numerical algebraic intersection using regeneration, (2013).Google Scholar
  71. [71]
    D.J. Bates et al., Homotopies to compute points on connected components, (2014).Google Scholar
  72. [72]
    D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/.
  73. [73]
    D.J. Bates, Bertini: Software for numerical algebraic geometry, http://bertini.nd.edu.
  74. [74]
    B. Sturmfels, Solving systems of polynomial equations, American Mathematical Society, U.S.A. (2002).zbMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Jonathan D. Hauenstein
    • 1
  • Rijun Huang
    • 2
    Email author
  • Dhagash Mehta
    • 1
  • Yang Zhang
    • 3
  1. 1.Department of Applied and Computational Mathematics and StatisticsUniversity of Notre DameNotre DameU.S.A.
  2. 2.Institut de Physique Théorique, CEA-SaclayGif-sur-Yvette CedexFrance
  3. 3.Niels Bohr International Academy and Discovery Center, The Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations