Advertisement

Journal of High Energy Physics

, 2015:132 | Cite as

Higgs production in association with bottom quarks

  • M. Wiesemann
  • R. Frederix
  • S. Frixione
  • V. Hirschi
  • F. Maltoni
  • P. Torrielli
Open Access
Regular Article - Theoretical Physics

Abstract

We study the production of a Higgs boson in association with bottom quarks in hadronic collisions, and present phenomenological predictions relevant to the 13 TeV LHC. Our results are accurate to the next-to-leading order in QCD, and matched to parton showers through the MC@NLO method; thus, they are fully differential and based on unweighted events, which we shower by using both Herwig++ and Pythia8. We perform the computation in both the four-flavour and the five-flavour schemes, whose results we compare extensively at the level of exclusive observables. In the case of the Higgs transverse momentum, we also consider the analytically-resummed cross section up to the NNLO+NNLL accuracy. In addition, we analyse at \( \mathcal{O}\left({\alpha}_S^3\right) \) the effects of the interference between the \( b\overline{b}H \) and gluon-fusion production modes.

Keywords

NLO Computations Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    S.L. Glashow, Partial symmetries of weak interactions, Nucl. Phys. 22 (1961) 579 [INSPIRE]CrossRefGoogle Scholar
  4. [4]
    S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    A. Salam, Weak and electromagnetic interactions, Conf. Proc. C 680519 (1968) 367 [INSPIRE].Google Scholar
  6. [6]
    CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003, CERN, Geneva Switzerland (2013).
  7. [7]
    CMS collaboration, Evidence for the 125 GeV Higgs boson decaying to a pair of τ leptons, CMS-HIG-13-004, CERN, Geneva Switzerland (2013).
  8. [8]
    CMS collaboration, Search for a Higgs boson decaying into a Z and a photon in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-HIG-13-006, CERN, Geneva Switzerland (2013).
  9. [9]
    CMS collaboration, Search for SM Higgs in W HW W W → 33ν, CMS-HIG-13-009, CERN, Geneva Switzerland (2013).
  10. [10]
    CMS collaboration, Precise determination of the mass of the Higgs boson and studies of the compatibility of its couplings with the standard model, CMS-PAS-HIG-14-009, CERN, Geneva Switzerland (2014).
  11. [11]
    ATLAS collaboration, Search for the standard model Higgs boson in the HZγ decay mode with pp collisions at \( \sqrt{s}=7 \) and 8 TeV, ATLAS-CONF-2013-009, CERN, Geneva Switzerland (2013).
  12. [12]
    ATLAS collaboration, Search for a standard model Higgs boson in Hμμ decays with the ATLAS detector., ATLAS-CONF-2013-010, CERN, Geneva Switzerland (2013).
  13. [13]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012, CERN, Geneva Switzerland (2013).
  14. [14]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-013, CERN, Geneva Switzerland (2013).
  15. [15]
    E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP 02 (2012) 088 [arXiv:1111.2854] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    H. Mantler and M. Wiesemann, Top- and bottom-mass effects in hadronic Higgs production at small transverse momenta through LO+NLL, Eur. Phys. J. C 73 (2013) 2467 [arXiv:1210.8263] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    M. Grazzini and H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    A. Banfi, P.F. Monni and G. Zanderighi, Quark masses in Higgs production with a jet veto, JHEP 01 (2014) 097 [arXiv:1308.4634] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    R.V. Harlander, H. Mantler and M. Wiesemann, Transverse momentum resummation for Higgs production via gluon fusion in the MSSM, JHEP 11 (2014) 116 [arXiv:1409.0531] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    M.A.G. Aivazis, J.C. Collins, F.I. Olness and W.-K. Tung, Leptoproduction of heavy quarks. 2. A unified QCD formulation of charged and neutral current processes from fixed target to collider energies, Phys. Rev. D 50 (1994) 3102 [hep-ph/9312319] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R.S. Thorne and R.G. Roberts, An ordered analysis of heavy flavor production in deep inelastic scattering, Phys. Rev. D 57 (1998) 6871 [hep-ph/9709442] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R.S. Thorne, A variable-flavor number scheme for NNLO, Phys. Rev. D 73 (2006) 054019 [hep-ph/0601245] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Cacciari, M. Greco and P. Nason, The p T spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    M. Krämer, F.I. Olness and D.E. Soper, Treatment of heavy quarks in deeply inelastic scattering, Phys. Rev. D 62 (2000) 096007 [hep-ph/0003035] [INSPIRE].ADSGoogle Scholar
  25. [25]
    W.-K. Tung, S. Kretzer and C. Schmidt, Open heavy flavor production in QCD: conceptual framework and implementation issues, J. Phys. G 28 (2002) 983 [hep-ph/0110247] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    R. Harlander, M. Krämer and M. Schumacher, Bottom-quark associated Higgs-boson production: reconciling the four- and five-flavour scheme approach, arXiv:1112.3478 [INSPIRE].
  27. [27]
    F. Maltoni, G. Ridolfi and M. Ubiali, b-initiated processes at the LHC: a reappraisal, JHEP 07 (2012) 022 [Erratum ibid. 04 (2013) 095] [arXiv:1203.6393] [INSPIRE].
  28. [28]
    F. Maltoni, Z. Sullivan and S. Willenbrock, Higgs-boson production via bottom-quark fusion, Phys. Rev. D 67 (2003) 093005 [hep-ph/0301033] [INSPIRE].ADSGoogle Scholar
  29. [29]
    E. Boos and T. Plehn, Higgs boson production induced by bottom quarks, Phys. Rev. D 69 (2004) 094005 [hep-ph/0304034] [INSPIRE].ADSGoogle Scholar
  30. [30]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Frixione, F. Stoeckli, P. Torrielli and B.R. Webber, NLO QCD corrections in HERWIG++ with MC@NLO, JHEP 01 (2011) 053 [arXiv:1010.0568] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    S. Dittmaier, M. Krämer and M. Spira, Higgs radiation off bottom quarks at the Tevatron and the CERN LHC, Phys. Rev. D 70 (2004) 074010 [hep-ph/0309204] [INSPIRE].ADSGoogle Scholar
  33. [33]
    S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth, Exclusive Higgs boson production with bottom quarks at hadron colliders, Phys. Rev. D 69 (2004) 074027 [hep-ph/0311067] [INSPIRE].ADSGoogle Scholar
  34. [34]
    R.V. Harlander, A. Tripathi and M. Wiesemann, Higgs production in bottom quark annihilation: transverse momentum distribution at NNLO+NNLL, Phys. Rev. D 90 (2014) 015017 [arXiv:1403.7196] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth, Higgs production in association with bottom quarks at hadron colliders, Mod. Phys. Lett. A 21 (2006) 89 [hep-ph/0508293] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    N. Liu, L. Wu, P.W. Wu and J.M. Yang, Complete one-loop effects of SUSY QCD in \( b\overline{b}h \) production at the LHC under current experimental constraints, JHEP 01 (2013) 161 [arXiv:1208.3413] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    S. Dittmaier, P. Häfliger, M. Krämer, M. Spira and M. Walser, Neutral MSSM Higgs-boson production with heavy quarks: NLO supersymmetric QCD corrections, Phys. Rev. D 90 (2014) 035010 [arXiv:1406.5307] [INSPIRE].ADSGoogle Scholar
  47. [47]
    D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock, Higgs boson production in association with bottom quarks at next-to-leading order, Phys. Rev. D 59 (1999) 094016 [hep-ph/9811492] [INSPIRE].ADSGoogle Scholar
  48. [48]
    C. Balázs, H.-J. He and C.P. Yuan, QCD corrections to scalar production via heavy quark fusion at hadron colliders, Phys. Rev. D 60 (1999) 114001 [hep-ph/9812263] [INSPIRE].ADSGoogle Scholar
  49. [49]
    T. Ahmed, M. Mahakhud, P. Mathews, N. Rana and V. Ravindran, Two-loop QCD corrections to Higgsb + \( \overline{b} \) + g amplitude, JHEP 08 (2014) 075 [arXiv:1405.2324] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    T. Gehrmann and D. Kara, The \( Hb\overline{b} \) form factor to three loops in QCD, JHEP 09 (2014) 174 [arXiv:1407.8114] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Higgs-boson production in association with a single bottom quark, Phys. Rev. D 67 (2003) 095002 [hep-ph/0204093] [INSPIRE].ADSGoogle Scholar
  52. [52]
    R.V. Harlander, K.J. Ozeren and M. Wiesemann, Higgs plus jet production in bottom quark annihilation at next-to-leading order, Phys. Lett. B 693 (2010) 269 [arXiv:1007.5411] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    R. Harlander and M. Wiesemann, Jet-veto in bottom-quark induced Higgs production at next-to-next-to-leading order, JHEP 04 (2012) 066 [arXiv:1111.2182] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    S. Bühler, F. Herzog, A. Lazopoulos and R. Müller, The fully differential hadronic production of a Higgs boson via bottom quark fusion at NNLO, JHEP 07 (2012) 115 [arXiv:1204.4415] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    K.J. Ozeren, Analytic results for Higgs production in bottom fusion, JHEP 11 (2010) 084 [arXiv:1010.2977] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    A. Belyaev, P.M. Nadolsky and C.-P. Yuan, Transverse momentum resummation for Higgs boson produced via \( b\overline{b} \) fusion at hadron colliders, JHEP 04 (2006) 004 [hep-ph/0509100] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    R. Frederix et al., W and Z/γ boson production in association with a bottom-antibottom pair, JHEP 09 (2011) 061 [arXiv:1106.6019] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    E. Braaten and J.P. Leveille, Higgs boson decay and the running mass, Phys. Rev. D 22 (1980) 715 [INSPIRE].ADSGoogle Scholar
  59. [59]
    C. Degrande et al., UFOthe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    S. Dittmaier, M. Krämer, A. Muck and T. Schluter, MSSM Higgs-boson production in bottom-quark fusion: electroweak radiative corrections, JHEP 03 (2007) 114 [hep-ph/0611353] [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    S. Dawson, C.B. Jackson and P. Jaiswal, SUSY QCD corrections to Higgs-b production: is the Δb approximation accurate?, Phys. Rev. D 83 (2011) 115007 [arXiv:1104.1631] [INSPIRE].ADSGoogle Scholar
  63. [63]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    J. Bellm et al., HERWIG++ 2.7 release note, arXiv:1310.6877 [INSPIRE].
  65. [65]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].CrossRefADSMATHGoogle Scholar
  66. [66]
    P. Torrielli and S. Frixione, Matching NLO QCD computations with PYTHIA using MC@NLO, JHEP 04 (2010) 110 [arXiv:1002.4293] [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
  69. [69]
    LHC Higgs Cross Section Working Group collaboration, LHC Higgs cross section working group collaboration webpage, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG.
  70. [70]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].CrossRefADSGoogle Scholar
  71. [71]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].CrossRefADSGoogle Scholar
  72. [72]
    G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].CrossRefADSGoogle Scholar
  73. [73]
    G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • M. Wiesemann
    • 1
  • R. Frederix
    • 2
  • S. Frixione
    • 2
  • V. Hirschi
    • 3
  • F. Maltoni
    • 4
  • P. Torrielli
    • 1
    • 5
  1. 1.Physik-InstitutUniversität ZürichZurichSwitzerland
  2. 2.PH Department, TH UnitCERNGeneva 23Switzerland
  3. 3.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  4. 4.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-la-NeuveBelgium
  5. 5.Dipartimento di FisicaUniversità di TorinoTorinoItaly

Personalised recommendations