Advertisement

Journal of High Energy Physics

, 2015:113 | Cite as

Chiral algebras for trinion theories

  • Madalena Lemos
  • Wolfger PeelaersEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

It was recently understood that one can identify a chiral algebra in any four-dimensional \( \mathcal{N}=2 \) superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.

Keywords

Supersymmetric gauge theory Extended Supersymmetry Conformal and W Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C. Beem et al., Infinite chiral symmetry in four dimensions, arXiv:1312.5344 [INSPIRE].
  2. [2]
    C. Beem, L. Rastelli and B.C. van Rees, W symmetry in six dimensions, arXiv:1404.1079 [INSPIRE].
  3. [3]
    C. Beem, W. Peelaers, L. Rastelli and B.C. van Rees, Chiral algebras of class S, arXiv:1408.6522 [INSPIRE].
  4. [4]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].
  6. [6]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d superconformal index from q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [arXiv:1104.3850] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge theories and Macdonald polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].CrossRefADSzbMATHMathSciNetGoogle Scholar
  8. [8]
    J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    A.B. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys. 65 (1985) 1205 [Teor. Mat. Fiz. 65 (1985) 347] [INSPIRE].
  10. [10]
    P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    K. Maruyoshi, Y. Tachikawa, W. Yan and K. Yonekura, N = 1 dynamics with T N theory, JHEP 10 (2013) 010 [arXiv:1305.5250] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    H. Hayashi, Y. Tachikawa and K. Yonekura, Mass-deformed T N as a linear quiver, arXiv:1410.6868 [INSPIRE].
  14. [14]
    J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E n global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    O. Chacaltana and J. Distler, Tinkertoys for Gaiotto duality, JHEP 11 (2010) 099 [arXiv:1008.5203] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    T. Arakawa, Characters of representations of affine Kac-Moody Lie algebras at the critical level, arXiv:0706.1817.
  17. [17]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York U.S.A. (1997) [INSPIRE].CrossRefzbMATHGoogle Scholar
  18. [18]
    F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].CrossRefADSzbMATHMathSciNetGoogle Scholar
  19. [19]
    K. Thielemans, An algorithmic approach to operator product expansions, W algebras and W strings, hep-th/9506159 [INSPIRE].
  20. [20]
    K. Thielemans, A Mathematica package for computing operator product expansions, Int. J. Mod. Phys. C 2 (1991) 787 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    H.G. Kausch and G.M.T. Watts, A study of W algebras using Jacobi identities, Nucl. Phys. B 354 (1991) 740 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    R. Blumenhagen et al., W algebras with two and three generators, Nucl. Phys. B 361 (1991) 255 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].CrossRefADSzbMATHMathSciNetGoogle Scholar
  24. [24]
    A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    D. Gaiotto, L. Rastelli and S.S. Razamat, Bootstrapping the superconformal index with surface defects, JHEP 01 (2013) 022 [arXiv:1207.3577] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    N. Mekareeya, J. Song and Y. Tachikawa, 2d TQFT structure of the superconformal indices with outer-automorphism twists, JHEP 03 (2013) 171 [arXiv:1212.0545] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    M. Lemos, W. Peelaers and L. Rastelli, The superconformal index of class S theories of type D, JHEP 05 (2014) 120 [arXiv:1212.1271] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.

Personalised recommendations