Journal of High Energy Physics

, 2015:106 | Cite as

Soft evolution of multi-jet final states

  • Erik Gerwick
  • Steffen Schumann
  • Stefan Höche
  • Simone Marzani
Open Access
Regular Article - Theoretical Physics


We present a new framework for computing resummed and matched distributions in processes with many hard QCD jets. The intricate color structure of soft gluon emission at large angles renders resummed calculations highly non-trivial in this case. We automate all ingredients necessary for the color evolution of the soft function at next-to-leading-logarithmic accuracy, namely the selection of the color bases and the projections of color operators and Born amplitudes onto those bases. Explicit results for all QCD processes with up to 2 → 5 partons are given. We also devise a new tree-level matching scheme for resummed calculations which exploits a quasi-local subtraction based on the Catani-Seymour dipole formalism. We implement both resummation and matching in the Sherpa event generator. As a proof of concept, we compute the resummed and matched transverse-thrust distribution for hadronic collisions.


QCD Phenomenology Jets 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Measurement of multi-jet cross sections in proton-proton collisions at a 7 TeV center-of-mass energy, Eur. Phys. J. C 71 (2011) 1763 [arXiv:1107.2092] [INSPIRE].ADSGoogle Scholar
  2. [2]
    ATLAS collaboration, Measurement of the production cross section of jets in association with a Z boson in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 07 (2013) 032 [arXiv:1304.7098] [INSPIRE].ADSGoogle Scholar
  3. [3]
    CMS collaboration, Measurements of jet multiplicity and differential production cross sections of Z+jets events in proton-proton collisions at \( \sqrt{s}=7 \) TeV, arXiv:1408.3104 [INSPIRE].
  4. [4]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].ADSGoogle Scholar
  5. [5]
    A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: a generator for all parton level processes, Comput. Phys. Commun. 180 (2009) 1941 [arXiv:0710.2427] [INSPIRE].ADSGoogle Scholar
  6. [6]
    T. Gleisberg and S. Höche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].ADSGoogle Scholar
  8. [8]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    R.K. Ellis, W.T. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [INSPIRE].ADSzbMATHGoogle Scholar
  11. [11]
    C.F. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].ADSGoogle Scholar
  12. [12]
    G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986 [arXiv:1110.1499] [INSPIRE].ADSGoogle Scholar
  13. [13]
    G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].ADSGoogle Scholar
  14. [14]
    F. Cascioli, P. Maierhöfer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSGoogle Scholar
  15. [15]
    V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Commun. 184 (2013) 1981 [arXiv:1209.0100] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the standard model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].ADSGoogle Scholar
  18. [18]
    H. Ita et al., Precise predictions for Z + 4 jets at hadron colliders, Phys. Rev. D 85 (2012) 031501 [arXiv:1108.2229] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Z. Bern et al., Next-to-leading order W + 5-jet production at the LHC, Phys. Rev. D 88 (2013) 014025 [arXiv:1304.1253] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Badger, B. Biedermann, P. Uwer and V. Yundin, Next-to-leading order QCD corrections to five jet production at the LHC, Phys. Rev. D 89 (2014) 034019 [arXiv:1309.6585] [INSPIRE].ADSGoogle Scholar
  21. [21]
    G. Cullen et al., Next-to-leading-order QCD corrections to Higgs boson production plus three jets in gluon fusion, Phys. Rev. Lett. 111 (2013) 131801 [arXiv:1307.4737] [INSPIRE].ADSGoogle Scholar
  22. [22]
    G. Marchesini and B.R. Webber, Simulation of QCD jets including soft gluon interference, Nucl. Phys. B 238 (1984) 1 [INSPIRE].ADSGoogle Scholar
  23. [23]
    T. Sjöstrand, A model for initial state parton showers, Phys. Lett. B 157 (1985) 321 [INSPIRE].ADSGoogle Scholar
  24. [24]
    G. Marchesini and B.R. Webber, Monte Carlo simulation of general hard processes with coherent QCD radiation, Nucl. Phys. B 310 (1988) 461 [INSPIRE].ADSGoogle Scholar
  25. [25]
    Z. Nagy and D.E. Soper, A new parton shower algorithm: shower evolution, matching at leading and next-to-leading order level, hep-ph/0601021 [INSPIRE].
  26. [26]
    W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Plätzer and S. Gieseke, Coherent parton showers with local recoils, JHEP 01 (2011) 024 [arXiv:0909.5593] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Plätzer and M. Sjödahl, Subleading N c improved parton showers, JHEP 07 (2012) 042 [arXiv:1201.0260] [INSPIRE].ADSGoogle Scholar
  30. [30]
    Z. Nagy and D.E. Soper, Parton shower evolution with subleading color, JHEP 06 (2012) 044 [arXiv:1202.4496] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: \( Wb\overline{b} \) + n jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [INSPIRE].ADSGoogle Scholar
  33. [33]
    L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].Google Scholar
  34. [34]
    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSGoogle Scholar
  36. [36]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. Höche, F. Krauss, M. Schönherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].Google Scholar
  39. [39]
    R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].ADSGoogle Scholar
  40. [40]
    L. Lönnblad and S. Prestel, Merging multi-leg NLO matrix elements with parton showers, JHEP 03 (2013) 166 [arXiv:1211.7278] [INSPIRE].ADSGoogle Scholar
  41. [41]
    K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP 05 (2013) 082 [arXiv:1212.4504] [INSPIRE].ADSGoogle Scholar
  42. [42]
    K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson production, JHEP 10 (2013) 222 [arXiv:1309.0017] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Höche, Y. Li and S. Prestel, Drell-Yan lepton pair production at NNLO QCD with parton showers, arXiv:1405.3607 [INSPIRE].
  44. [44]
    J.R. Andersen and J.M. Smillie, Multiple jets at the LHC with high energy jets, JHEP 06 (2011) 010 [arXiv:1101.5394] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Dasgupta and G.P. Salam, Event shapes in e + e annihilation and deep inelastic scattering, J. Phys. G 30 (2004) R143 [hep-ph/0312283] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP 06 (2010) 038 [arXiv:1001.4082] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Banfi, G.P. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP 01 (2002) 018 [hep-ph/0112156] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Banfi, G.P. Salam and G. Zanderighi, Generalized resummation of QCD final state observables, Phys. Lett. B 584 (2004) 298 [hep-ph/0304148] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders, JHEP 08 (2004) 062 [hep-ph/0407287] [INSPIRE].ADSGoogle Scholar
  50. [50]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].ADSGoogle Scholar
  51. [51]
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with power corrections and a precision global fit for α s(m Z), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at N 3 LL including power corrections, arXiv:1411.6633 [INSPIRE].
  53. [53]
    G. Oderda and G.F. Sterman, Energy and color flow in dijet rapidity gaps, Phys. Rev. Lett. 81 (1998) 3591 [hep-ph/9806530] [INSPIRE].ADSGoogle Scholar
  54. [54]
    R.B. Appleby and M.H. Seymour, The resummation of interjet energy flow for gaps between jets processes at HERA, JHEP 09 (2003) 056 [hep-ph/0308086] [INSPIRE].ADSGoogle Scholar
  55. [55]
    J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD, JHEP 08 (2006) 059 [hep-ph/0604094] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD: colour basis independent calculation, JHEP 09 (2008) 128 [arXiv:0808.1269] [INSPIRE].ADSGoogle Scholar
  57. [57]
    J. Forshaw, J. Keates and S. Marzani, Jet vetoing at the LHC, JHEP 07 (2009) 023 [arXiv:0905.1350] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R.M. Duran Delgado, J.R. Forshaw, S. Marzani and M.H. Seymour, The dijet cross section with a jet veto, JHEP 08 (2011) 157 [arXiv:1107.2084] [INSPIRE].ADSGoogle Scholar
  59. [59]
    X. Liu and F. Petriello, Resummation of jet-veto logarithms in hadronic processes containing jets, Phys. Rev. D 87 (2013) 014018 [arXiv:1210.1906] [INSPIRE].ADSGoogle Scholar
  60. [60]
    ATLAS collaboration, Measurement of dijet production with a veto on additional central jet activity in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, JHEP 09 (2011) 053 [arXiv:1107.1641] [INSPIRE].ADSGoogle Scholar
  61. [61]
    ATLAS collaboration, Measurement of \( t\overline{t} \) production with a veto on additional central jet activity in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Eur. Phys. J. C 72 (2012) 2043 [arXiv:1203.5015] [INSPIRE].ADSGoogle Scholar
  62. [62]
    ATLAS collaboration, Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Eur. Phys. J. C 74 (2014) 3117 [arXiv:1407.5756] [INSPIRE].ADSGoogle Scholar
  63. [63]
    CMS collaboration, Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 06 (2012) 036 [arXiv:1202.0704] [INSPIRE].ADSGoogle Scholar
  64. [64]
    A. Banfi, G.P. Salam and G. Zanderighi, NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].ADSGoogle Scholar
  65. [65]
    A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].ADSGoogle Scholar
  66. [66]
    A. Banfi, P.F. Monni and G. Zanderighi, Quark masses in Higgs production with a jet veto, JHEP 01 (2014) 097 [arXiv:1308.4634] [INSPIRE].ADSGoogle Scholar
  67. [67]
    T. Becher and M. Neubert, Factorization and NNLL resummation for Higgs production with a jet veto, JHEP 07 (2012) 108 [arXiv:1205.3806] [INSPIRE].ADSGoogle Scholar
  68. [68]
    T. Becher, M. Neubert and L. Rothen, Factorization and N 3 LL p + NNLO predictions for the Higgs cross section with a jet veto, JHEP 10 (2013) 125 [arXiv:1307.0025] [INSPIRE].ADSGoogle Scholar
  69. [69]
    I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet p T resummation in Higgs production at NNLL + NNLO, Phys. Rev. D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].ADSGoogle Scholar
  70. [70]
    R. Boughezal, X. Liu, F. Petriello, F.J. Tackmann and J.R. Walsh, Combining resummed Higgs predictions across jet bins, Phys. Rev. D 89 (2014) 074044 [arXiv:1312.4535] [INSPIRE].ADSGoogle Scholar
  71. [71]
    H.-N. Li, Z. Li and C.-P. Yuan, QCD resummation for light-particle jets, Phys. Rev. D 87 (2013) 074025 [arXiv:1206.1344] [INSPIRE].ADSGoogle Scholar
  72. [72]
    M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Spannowsky, On jet mass distributions in Z+jet and dijet processes at the LHC, JHEP 10 (2012) 126 [arXiv:1207.1640] [INSPIRE].ADSGoogle Scholar
  73. [73]
    Y.-T. Chien, R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of jet mass at hadron colliders, Phys. Rev. D 87 (2013) 014010 [arXiv:1208.0010] [INSPIRE].ADSGoogle Scholar
  74. [74]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet mass spectra in Higgs boson plus one jet at next-to-next-to-leading logarithmic order, Phys. Rev. D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].ADSGoogle Scholar
  75. [75]
    A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].ADSMathSciNetGoogle Scholar
  76. [76]
    A.J. Larkoski and J. Thaler, Unsafe but calculable: ratios of angularities in perturbative QCD, JHEP 09 (2013) 137 [arXiv:1307.1699] [INSPIRE].ADSGoogle Scholar
  77. [77]
    A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].ADSGoogle Scholar
  78. [78]
    A.J. Larkoski, I. Moult and D. Neill, Toward multi-differential cross sections: measuring two angularities on a single jet, JHEP 09 (2014) 046 [arXiv:1401.4458] [INSPIRE].Google Scholar
  79. [79]
    A.J. Larkoski, I. Moult and D. Neill, Power counting to better jet observables, JHEP 12 (2014) 009 [arXiv:1409.6298] [INSPIRE].ADSGoogle Scholar
  80. [80]
    E. Gerwick, S. Schumann, B. Gripaios and B. Webber, QCD jet rates with the inclusive generalized k t algorithms, JHEP 04 (2013) 089 [arXiv:1212.5235] [INSPIRE].ADSGoogle Scholar
  81. [81]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].ADSGoogle Scholar
  82. [82]
    M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, Eur. Phys. J. C 73 (2013) 2623 [arXiv:1307.0013] [INSPIRE].ADSGoogle Scholar
  83. [83]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSGoogle Scholar
  84. [84]
    A. Broggio, A. Ferroglia, B.D. Pecjak and Z. Zhang, NNLO hard functions in massless QCD, JHEP 12 (2014) 005 [arXiv:1409.5294] [INSPIRE].ADSGoogle Scholar
  85. [85]
    P. Hinderer, F. Ringer, G.F. Sterman and W. Vogelsang, Toward NNLL threshold resummation for hadron pair production in hadronic collisions, Phys. Rev. D 91 (2015) 014016 [arXiv:1411.3149] [INSPIRE].ADSGoogle Scholar
  86. [86]
    Y. Dokshitzer and G. Marchesini, Hadron collisions and the fifth form-factor, Phys. Lett. B 631 (2005) 118 [hep-ph/0508130] [INSPIRE].ADSGoogle Scholar
  87. [87]
    Y. Dokshitzer and G. Marchesini, Soft gluons at large angles in hadron collisions, JHEP 01 (2006) 007 [hep-ph/0509078] [INSPIRE].ADSGoogle Scholar
  88. [88]
    N. Kidonakis, G. Oderda and G.F. Sterman, Evolution of color exchange in QCD hard scattering, Nucl. Phys. B 531 (1998) 365 [hep-ph/9803241] [INSPIRE].ADSGoogle Scholar
  89. [89]
    R. Bonciani, S. Catani, M.L. Mangano and P. Nason, Sudakov resummation of multiparton QCD cross-sections, Phys. Lett. B 575 (2003) 268 [hep-ph/0307035] [INSPIRE].ADSGoogle Scholar
  90. [90]
    S. Catani, M. Ciafaloni and G. Marchesini, Noncancelling infrared divergences in QCD coherent state, Nucl. Phys. B 264 (1986) 588 [INSPIRE].ADSMathSciNetGoogle Scholar
  91. [91]
    S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].ADSGoogle Scholar
  92. [92]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  93. [93]
    A. Bassetto, M. Ciafaloni and G. Marchesini, Jet structure and infrared sensitive quantities in perturbative QCD, Phys. Rept. 100 (1983) 201 [INSPIRE].ADSGoogle Scholar
  94. [94]
    M. Sjödahl, Color evolution of 2 → 3 processes, JHEP 12 (2008) 083 [arXiv:0807.0555] [INSPIRE].ADSGoogle Scholar
  95. [95]
    M. Sjödahl, Color structure for soft gluon resummation: a general recipe, JHEP 09 (2009) 087 [arXiv:0906.1121] [INSPIRE].ADSGoogle Scholar
  96. [96]
    M. Sjödahl, ColorMatha package for color summed calculations in SU(N c), Eur. Phys. J. C 73 (2013) 2310 [arXiv:1211.2099] [INSPIRE].ADSGoogle Scholar
  97. [97]
    S. Keppeler and M. Sjödahl, Orthogonal multiplet bases in SU(N c) color space, JHEP 09 (2012) 124 [arXiv:1207.0609] [INSPIRE].ADSGoogle Scholar
  98. [98]
    C. Duhr, S. Höche and F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes, JHEP 08 (2006) 062 [hep-ph/0607057] [INSPIRE].ADSGoogle Scholar
  99. [99]
    T. Gleisberg et al., SHERPA 1.α: a proof of concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [INSPIRE].ADSGoogle Scholar
  100. [100]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].ADSGoogle Scholar
  101. [101]
    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].ADSGoogle Scholar
  102. [102]
    V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys. B 568 (2000) 211 [hep-ph/9909464] [INSPIRE].ADSGoogle Scholar
  103. [103]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].ADSGoogle Scholar
  104. [104]
    F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color flow decomposition of QCD amplitudes, Phys. Rev. D 67 (2003) 014026 [hep-ph/0209271] [INSPIRE].ADSGoogle Scholar
  105. [105]
    G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].
  106. [106]
    A. Schofield and M.H. Seymour, Jet vetoing and HERWIG++, JHEP 01 (2012) 078 [arXiv:1103.4811] [INSPIRE].ADSGoogle Scholar
  107. [107]
    S. Plätzer, Summing large-N towers in colour flow evolution, Eur. Phys. J. C 74 (2014) 2907 [arXiv:1312.2448] [INSPIRE].ADSGoogle Scholar
  108. [108]
    A. Schofield, Simulation of colour evolution in QCD scattering processes, Ph.D. thesis, University of Manchester, Manchester U.K. (2013).
  109. [109]
    R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders, Nucl. Phys. B 312 (1989) 616 [INSPIRE].ADSGoogle Scholar
  110. [110]
    S. Höche, F. Krauss, M. Schönherr and F. Siegert, Automating the POWHEG method in Sherpa, JHEP 04 (2011) 024 [arXiv:1008.5399] [INSPIRE].Google Scholar
  111. [111]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].ADSGoogle Scholar
  112. [112]
    M. Dasgupta and G.P. Salam, Accounting for coherence in interjet E t flow: a case study, JHEP 03 (2002) 017 [hep-ph/0203009] [INSPIRE].ADSGoogle Scholar
  113. [113]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSGoogle Scholar
  114. [114]
    A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP 08 (2002) 006 [hep-ph/0206076] [INSPIRE].ADSGoogle Scholar
  115. [115]
    M.D. Schwartz and H.X. Zhu, Nonglobal logarithms at three loops, four loops, five loops and beyond, Phys. Rev. D 90 (2014) 065004 [arXiv:1403.4949] [INSPIRE].ADSGoogle Scholar
  116. [116]
    Y. Hatta and T. Ueda, Resummation of non-global logarithms at finite N c, Nucl. Phys. B 874 (2013) 808 [arXiv:1304.6930] [INSPIRE].ADSMathSciNetGoogle Scholar
  117. [117]
    T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].ADSGoogle Scholar
  118. [118]
    D0 collaboration, I.A. Bertram, Jet results at the D0 experiment, Acta Phys. Polon. B 33 (2002) 3141 [INSPIRE].Google Scholar
  119. [119]
    CDF collaboration, T. Aaltonen et al., Measurement of event shapes in proton-antiproton collisions at center-of-mass energy 1.96 TeV, Phys. Rev. D 83 (2011) 112007 [arXiv:1103.5143] [INSPIRE].ADSGoogle Scholar
  120. [120]
    ATLAS collaboration, Measurement of event shapes at large momentum transfer with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 72 (2012) 2211 [arXiv:1206.2135] [INSPIRE].ADSGoogle Scholar
  121. [121]
    CMS collaboration, Study of hadronic event-shape variables in multijet final states in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 10 (2014) 087 [arXiv:1407.2856] [INSPIRE].Google Scholar
  122. [122]
    Z. Nagy, Next-to-leading order calculation of three jet observables in hadron-hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Erik Gerwick
    • 1
  • Steffen Schumann
    • 1
  • Stefan Höche
    • 2
  • Simone Marzani
    • 3
  1. 1.II. Physikalisches InstitutUniversität GöttingenGöttingenGermany
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  3. 3.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations