Journal of High Energy Physics

, 2015:92 | Cite as

Non-minimal fields of the pure spinor string in general curved backgrounds

Open Access
Regular Article - Theoretical Physics

Abstract

We study the coupling of the non-minimal ghost fields of the pure spinor superstring in general curved backgrounds. The coupling is found solving the consistency relations from the nilpotency of the non-minimal BRST charge.

Keywords

Superstrings and Heterotic Strings Conformal Field Models in String Theory 

References

  1. [1]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    N. Berkovits and C.R. Mafra, Equivalence of two-loop superstring amplitudes in the pure spinor and RNS formalisms, Phys. Rev. Lett. 96 (2006) 011602 [hep-th/0509234] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    O. Chandia, A note on T-dualities in the pure spinor heterotic string, JHEP 04 (2009) 104 [arXiv:0902.2729] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    N. Berkovits, Quantum consistency of the superstring in AdS 5 × S 5 background, JHEP 03 (2005) 041 [hep-th/0411170] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    B.C. Vallilo and L. Mazzucato, The Konishi multiplet at strong coupling, JHEP 12 (2011) 029 [arXiv:1102.1219] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    O. Chandia, L.I. Bevilaqua and B.C. Vallilo, AdS pure spinor superstring in constant backgrounds, JHEP 06 (2014) 029 [arXiv:1404.0974] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    N. Berkovits, Twistor origin of the superstring, arXiv:1409.2510 [INSPIRE].
  9. [9]
    N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring, JHEP 09 (2004) 047 [hep-th/0406055] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP 10 (2005) 089 [hep-th/0509120] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    N. Berkovits and N. Nekrasov, Multiloop superstring amplitudes from non-minimal pure spinor formalism, JHEP 12 (2006) 029 [hep-th/0609012] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    I. Bakhmatov and N. Berkovits, Pure spinor b-ghost in a super-Maxwell background, JHEP 11 (2013) 214 [arXiv:1310.3379] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    O. Chandia, The non-minimal heterotic pure spinor string in a curved background, JHEP 03 (2014) 095 [arXiv:1311.7012] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    N. Berkovits and P.S. Howe, Ten-dimensional supergravity constraints from the pure spinor formalism for the superstring, Nucl. Phys. B 635 (2002) 75 [hep-th/0112160] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    O. Chandia and B.C. Vallilo, Conformal invariance of the pure spinor superstring in a curved background, JHEP 04 (2004) 041 [hep-th/0401226] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    O. Chandia, A note on the classical BRST symmetry of the pure spinor string in a curved background, JHEP 07 (2006) 019 [hep-th/0604115] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    O.A. Bedoya and O. Chandia, One-loop conformal invariance of the type II pure spinor superstring in a curved background, JHEP 01 (2007) 042 [hep-th/0609161] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    N. Berkovits and O. Chandia, Superstring vertex operators in an AdS 5 × S 5 background, Nucl. Phys. B 596 (2001) 185 [hep-th/0009168] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    N. Berkovits, Dynamical twisting and the b ghost in the pure spinor formalism, JHEP 06 (2013) 091 [arXiv:1305.0693] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    N. Berkovits and O. Chandia, Simplified pure spinor b ghost in a curved heterotic superstring background, JHEP 06 (2014) 001 [arXiv:1403.2429] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    A. Mikhailov, Symmetries of massless vertex operators in AdS 5 × S 5, J. Geom. Phys. 62 (2012) 479 [arXiv:0903.5022] [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo IbáñezFacultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezPeñalolénChile
  2. 2.Departamento de Ciencias Físicas, Facultad de Ciencias ExactasUniversidad Andrés BelloSantiagoChile

Personalised recommendations