Advertisement

Journal of High Energy Physics

, 2015:77 | Cite as

Two-loop splitting amplitudes and the single-real contribution to inclusive Higgs production at N3LO

  • Claude Duhr
  • Thomas Gehrmann
  • Matthieu Jaquier
Open Access
Regular Article - Theoretical Physics

Abstract

The factorisation of QCD matrix elements in the limit of two external partons becoming collinear is described by process-independent splitting amplitudes, which can be expanded systematically in perturbation theory. Working in conventional dimensional regularisation, we compute the two-loop splitting amplitudes for all simple collinear splitting processes, including subleading terms in the regularisation parameter. Our results are then applied to derive an analytical expression for the two-loop single-real contribution to inclusive Higgs boson production in gluon fusion to fourth order (N3LO) in perturbative QCD.

Keywords

Higgs Physics QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    A. Bassetto, M. Ciafaloni and G. Marchesini, Jet structure and infrared sensitive quantities in perturbative QCD, Phys. Rept. 100 (1983) 201 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    Yu.L. Dokshitser, V.A. Khoze, A.H. Mueller and S.I. Troian, Basics of perturbative QCD, Editions Frontières, Gif-sur-Yvette France (1991) [INSPIRE] and references therein.
  4. [4]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  6. [6]
    D.A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [INSPIRE].ADSGoogle Scholar
  7. [7]
    D.A. Kosower, All order collinear behavior in gauge theories, Nucl. Phys. B 552 (1999) 319 [hep-ph/9901201] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].
  11. [11]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B 527 (1998) 264 [hep-ph/9710255] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    S. Catani and M. Grazzini, Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett. B 446 (1999) 143 [hep-ph/9810389] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    T.G. Birthwright, E.W.N. Glover, V.V. Khoze and P. Marquard, Multi-gluon collinear limits from MHV diagrams, JHEP 05 (2005) 013 [hep-ph/0503063] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    S. Catani, D. de Florian and G. Rodrigo, The triple collinear limit of one loop QCD amplitudes, Phys. Lett. B 586 (2004) 323 [hep-ph/0312067] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    S. Buchta, G. Chachamis, P. Draggiotis, I. Malamos and G. Rodrigo, On the singular behaviour of scattering amplitudes in quantum field theory, JHEP 11 (2014) 014 [arXiv:1405.7850] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop ggg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    S.D. Badger and E.W.N. Glover, Two loop splitting functions in QCD, JHEP 07 (2004) 040 [hep-ph/0405236] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    L.W. Garland, T. Gehrmann, E.W.N. Glover, A. Koukoutsakis and E. Remiddi, The two loop QCD matrix element for e + e → 3 jets, Nucl. Phys. B 627 (2002) 107 [hep-ph/0112081] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-loop QCD corrections to the helicity amplitudes for H → 3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys. Lett. B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    Y. Li and H.X. Zhu, Single soft gluon emission at two loops, JHEP 11 (2013) 080 [arXiv:1309.4391] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    R.J. Gonsalves, Dimensionally regularized two loop on-shell quark form-factor, Phys. Rev. D 28 (1983) 1542 [INSPIRE].ADSGoogle Scholar
  28. [28]
    G. Kramer and B. Lampe, Integrals for two loop calculations in massless QCD, J. Math. Phys. 28 (1987) 945 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    T. Gehrmann, T. Huber and D. Maître, Two-loop quark and gluon form-factors in dimensional regularisation, Phys. Lett. B 622 (2005) 295 [hep-ph/0507061] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    M. Höschele, J. Hoff, A. Pak, M. Steinhauser and T. Ueda, Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO, Phys. Lett. B 721 (2013) 244 [arXiv:1211.6559] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    S. Buehler and A. Lazopoulos, Scale dependence and collinear subtraction terms for Higgs production in gluon fusion at N 3 LO, JHEP 10 (2013) 096 [arXiv:1306.2223] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N 3 LO, JHEP 07 (2013) 003 [arXiv:1302.4379] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Real-virtual contributions to the inclusive Higgs cross-section at N 3 LO, JHEP 12 (2013) 088 [arXiv:1311.1425] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, N 3 LO Higgs boson and Drell-Yan production at threshold: the one-loop two-emission contribution, Phys. Rev. D 90 (2014) 053006 [arXiv:1404.5839] [INSPIRE].ADSGoogle Scholar
  37. [37]
    C. Anastasiou et al., Higgs boson gluon-fusion production at threshold in N 3 LO QCD, Phys. Lett. B 737 (2014) 325 [arXiv:1403.4616] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    Z. Bern, V. Del Duca and C.R. Schmidt, The infrared behavior of one loop gluon amplitudes at next-to-next-to-leading order, Phys. Lett. B 445 (1998) 168 [hep-ph/9810409] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: the planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: the non-planar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    A.V. Kotikov, Differential equations method: the calculation of vertex type Feynman diagrams, Phys. Lett. B 259 (1991) 314 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    A.V. Kotikov, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  45. [45]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multiloop integrals, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083] [INSPIRE].CrossRefADSzbMATHMathSciNetGoogle Scholar
  47. [47]
    S. Catani, D. de Florian and G. Rodrigo, Space-like (versus time-like) collinear limits in QCD: is factorization violated?, JHEP 07 (2012) 026 [arXiv:1112.4405] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  49. [49]
    K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831 [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  50. [50]
    F.C.S. Brown, Multiple zeta values and periods of moduli spaces mathcalM 0,n, Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [INSPIRE].zbMATHGoogle Scholar
  51. [51]
    A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [INSPIRE].
  52. [52]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  53. [53]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  54. [54]
    A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128 (2005) 209 [math/0208144] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  55. [55]
    F. Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [INSPIRE].
  56. [56]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  57. [57]
    F. Dulat and B. Mistlberger, Real-virtual-virtual contributions to the inclusive Higgs cross section at N3LO, arXiv:1411.3586 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Claude Duhr
    • 1
  • Thomas Gehrmann
    • 2
  • Matthieu Jaquier
    • 2
  1. 1.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-La-NeuveBelgium
  2. 2.Physik-InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations