Journal of High Energy Physics

, 2015:72 | Cite as

Heavy Majorana neutrinos from fusion at hadron colliders

Open Access
Regular Article - Theoretical Physics

Abstract

Vector boson fusion processes become increasingly more important at higher collider energies and for probing larger mass scales due to collinear logarithmic enhancements of the cross section. In this context, we revisit the production of a hypothetic heavy Majorana neutrino (N) at hadron colliders. Particular attention is paid to the fusion process Nℓ±. We systematically categorize the contributions from a photon initial state in the elastic, inelastic, and deeply inelastic channels. Comparing with the leading channel via the Drell-Yan production \( q{\overline{q}}^{\prime } \)→ W*→ Nℓ± at NNLO in QCD, we find that the fusion process becomes relatively more important at higher scales, surpassing the DY mechanism at mN ∼ 1 TeV (770 GeV), at the 14 TeV LHC (100 TeV VLHC). We investigate the inclusive heavy Majorana neutrino signal, including QCD corrections, and quantify the Standard Model backgrounds at future hadron colliders. We conclude that, with the currently allowed mixing |VμN|2 < 6 × 10−3, a 5σ discovery can be made via the same-sign dimuon channel for mN = 530 (1070) GeV at the 14 TeV LHC (100 TeV VLHC) after 1 ab−1. Reversely, for mN = 500 GeV and the same integrated luminosity, a mixing |VμN|2 of the order 1.1 × 10−3 (2.5 × 10−4) may be probed.

Keywords

Beyond Standard Model Neutrino Physics 

References

  1. [1]
    R.N. Mohapatra and P.B. Pal, Massive neutrinos in physics and astrophysics. Second edition, World Sci. Lect. Notes Phys. 60 (1998) 1 [World Sci. Lect. Notes Phys. 72 (2004) 1] [INSPIRE].
  2. [2]
    J. Gluza, On teraelectronvolt Majorana neutrinos, Acta Phys. Polon. B 33 (2002) 1735 [hep-ph/0201002] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M. Fukugita and T. Yanagida, Physics of neutrinos and applications to astrophysics, Springer, Berlin Germany (2003).CrossRefGoogle Scholar
  4. [4]
    V. Barger, D. Marfatia and K. Whisnant, Progress in the physics of massive neutrinos, Int. J. Mod. Phys. E 12 (2003) 569 [hep-ph/0308123] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    Particle Data Group collaboration, S. Eidelman et al., Review of particle physics, Phys. Lett. B 592 (2004) 1 [INSPIRE].ADSGoogle Scholar
  6. [6]
    R.N. Mohapatra and A.Y. Smirnov, Neutrino mass and new physics, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [hep-ph/0603118] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    A. Strumia and F. Vissani, Neutrino masses and mixings and. . . , hep-ph/0606054 [INSPIRE].
  8. [8]
    M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].Google Scholar
  11. [11]
    P. Van Nieuwenhuizen and D.Z. Freedman, Supergravity. Proceedings, workshop at stony brook, 27-29 September 1979, North-Holland, Amsterdam, Netherlands (1979).Google Scholar
  12. [12]
    P. Ramond, The family group in grand unified theories, hep-ph/9809459 [INSPIRE].
  13. [13]
    S.L. Glashow, The future of elementary particle physics, NATO Sci. Ser. B 59 (1980) 687.Google Scholar
  14. [14]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  16. [16]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  17. [17]
    R.E. Shrock, General theory of weak leptonic and semileptonic decays. 1. Leptonic pseudoscalar meson decays, with associated tests for and bounds on, neutrino masses and lepton mixing, Phys. Rev. D 24 (1981) 1232 [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Schechter and J.W.F. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev. D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  19. [19]
    N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Small neutrino masses from supersymmetry breaking, Phys. Rev. D 64 (2001) 115011 [hep-ph/0006312] [INSPIRE].ADSGoogle Scholar
  20. [20]
    F. Borzumati and Y. Nomura, Low scale seesaw mechanisms for light neutrinos, Phys. Rev. D 64 (2001) 053005 [hep-ph/0007018] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. de Gouvêa, See-saw energy scale and the LSND anomaly, Phys. Rev. D 72 (2005) 033005 [hep-ph/0501039] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. de Gouvêa, J. Jenkins and N. Vasudevan, Neutrino phenomenology of very low-energy seesaws, Phys. Rev. D 75 (2007) 013003 [hep-ph/0608147] [INSPIRE].ADSGoogle Scholar
  23. [23]
    W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    D.A. Dicus, D.D. Karatas and P. Roy, Lepton nonconservation at supercollider energies, Phys. Rev. D 44 (1991) 2033 [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields, Z. Phys. C 55 (1992) 275 [hep-ph/9901206] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Datta, M. Guchait and A. Pilaftsis, Probing lepton number violation via Majorana neutrinos at hadron supercolliders, Phys. Rev. D 50 (1994) 3195 [hep-ph/9311257] [INSPIRE].ADSGoogle Scholar
  27. [27]
    T. Han and B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    F. del Aguila, J.A. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at large hadron colliders, JHEP 10 (2007) 047 [hep-ph/0703261] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    W. Chao, Z.G. Si, Y.J. Zheng and S. Zhou, Testing the realistic seesaw model with two heavy majorana neutrinos at the CERN Large Hadron Collider, Phys. Lett. B 683 (2010) 26 [arXiv:0907.0935] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    J.A. Aguilar-Saavedra, F. Deppisch, O. Kittel and J.W.F. Valle, Flavour in heavy neutrino searches at the LHC, Phys. Rev. D 85 (2012) 091301 [arXiv:1203.5998] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S.P. Das, F.F. Deppisch, O. Kittel and J.W.F. Valle, Heavy neutrinos and lepton flavour violation in left-right symmetric models at the LHC, Phys. Rev. D 86 (2012) 055006 [arXiv:1206.0256] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J.A. Aguilar-Saavedra and F.R. Joaquim, Measuring heavy neutrino couplings at the LHC, Phys. Rev. D 86 (2012) 073005 [arXiv:1207.4193] [INSPIRE].ADSGoogle Scholar
  34. [34]
    T. Han, I. Lewis, R. Ruiz and Z.-g. Si, Lepton number violation and W chiral couplings at the LHC, Phys. Rev. D 87 (2013) 035011 [arXiv:1211.6447] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C.-Y. Chen, P.S.B. Dev and R.N. Mohapatra, Probing heavy-light neutrino mixing in left-right seesaw models at the LHC, Phys. Rev. D 88 (2013) 033014 [arXiv:1306.2342] [INSPIRE].ADSGoogle Scholar
  36. [36]
    P.S.B. Dev, A. Pilaftsis and U.-k. Yang, New production mechanism for heavy neutrinos at the LHC, Phys. Rev. Lett. 112 (2014) 081801 [arXiv:1308.2209] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    H. Davoudiasl and I.M. Lewis, Right-handed neutrinos as the origin of the electroweak scale, Phys. Rev. D 90 (2014) 033003 [arXiv:1404.6260] [INSPIRE].ADSGoogle Scholar
  38. [38]
    D. Binosi and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    CMS collaboration, Search for heavy Majorana neutrinos in μ + μ +[μ μ ] and e + e +[e e ] events in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 717 (2012) 109 [arXiv:1207.6079] [INSPIRE].ADSGoogle Scholar
  40. [40]
    ATLAS collaboration, Search for Majorana neutrino production in pp collisions at \( \sqrt{s} \) = 7 TeV in dimuon final states with the ATLAS detector, ATLAS-CONF-2012-139 (2012).
  41. [41]
    LHCb collaboration, Searches for Majorana neutrinos in B decays, Phys. Rev. D 85 (2012) 112004 [arXiv:1201.5600] [INSPIRE].Google Scholar
  42. [42]
    G. Bélanger, F. Boudjema, D. London and H. Nadeau, Inverse neutrinoless double beta decay revisited, Phys. Rev. D 53 (1996) 6292 [hep-ph/9508317] [INSPIRE].ADSGoogle Scholar
  43. [43]
    P. Benes, A. Faessler, F. Simkovic and S. Kovalenko, Sterile neutrinos in neutrinoless double beta decay, Phys. Rev. D 71 (2005) 077901 [hep-ph/0501295] [INSPIRE].ADSGoogle Scholar
  44. [44]
    E. Nardi, E. Roulet and D. Tommasini, Limits on neutrino mixing with new heavy particles, Phys. Lett. B 327 (1994) 319 [hep-ph/9402224] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    E. Nardi, E. Roulet and D. Tommasini, New neutral gauge bosons and new heavy fermions in the light of the new LEP data, Phys. Lett. B 344 (1995) 225 [hep-ph/9409310] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE].ADSGoogle Scholar
  47. [47]
    S. Antusch and O. Fischer, Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities, JHEP 1410 (2014) 94 [arXiv:1407.6607] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α s2 correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403-404] [INSPIRE].
  49. [49]
    V.M. Budnev, I.F. Ginzburg, G.V. Meledin and V.G. Serbo, The two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation, Phys. Rept. 15 (1975) 181 [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    B.A. Kniehl, Elastic ep scattering and the Weizsacker-Williams approximation, Phys. Lett. B 254 (1991) 267 [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    M.M. Block, E.M. Gregores, F. Halzen and G. Pancheri, Photon-proton and photon-photon scattering from nucleon-nucleon forward amplitudes, Phys. Rev. D 60 (1999) 054024 [hep-ph/9809403] [INSPIRE].ADSGoogle Scholar
  52. [52]
    M. Gluck, C. Pisano and E. Reya, The polarized and unpolarized photon content of the nucleon, Phys. Lett. B 540 (2002) 75 [hep-ph/0206126] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    B.E. Cox et al., Detecting the standard model Higgs boson in the WW decay channel using forward proton tagging at the LHC, Eur. Phys. J. C 45 (2006) 401 [hep-ph/0505240] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    J. de Favereau de Jeneret et al., High energy photon interactions at the LHC, arXiv:0908.2020 [INSPIRE].
  55. [55]
    D. d’Enterria and G.G. da Silveira, Observing light-by-light scattering at the Large Hadron Collider, Phys. Rev. Lett. 111 (2013) 080405 [arXiv:1305.7142] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    M. Drees and K. Grassie, Parametrizations of the photon structure and applications to supersymmetric particle production at HERA, Z. Phys. C 28 (1985) 451 [INSPIRE].ADSGoogle Scholar
  57. [57]
    M. Drees, R.M. Godbole, M. Nowakowski and S.D. Rindani, γγ processes at high-energy pp colliders, Phys. Rev. D 50 (1994) 2335 [hep-ph/9403368] [INSPIRE].ADSGoogle Scholar
  58. [58]
    V.A. Khoze, A.D. Martin and M.G. Ryskin, Prospects for new physics observations in diffractive processes at the LHC and Tevatron, Eur. Phys. J. C 23 (2002) 311 [hep-ph/0111078] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    T. Han, B. Mukhopadhyaya, Z. Si and K. Wang, Pair production of doubly-charged scalars: neutrino mass constraints and signals at the LHC, Phys. Rev. D 76 (2007) 075013 [arXiv:0706.0441] [INSPIRE].ADSGoogle Scholar
  60. [60]
    A. Das, P.S. Bhupal Dev and N. Okada, Direct bounds on electroweak scale pseudo-Dirac neutrinos from \( \sqrt{s} \) = 8 TeV LHC data, Phys. Lett. B 735 (2014) 364 [arXiv:1405.0177] [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    E. Chapon, C. Royon and O. Kepka, Anomalous quartic WWγγ, ZZγγ and trilinear WW gamma couplings in two-photon processes at high luminosity at the LHC, Phys. Rev. D 81 (2010) 074003 [arXiv:0912.5161] [INSPIRE].ADSGoogle Scholar
  62. [62]
    I. Sahin and M. Koksal, Search for electromagnetic properties of the neutrinos at the LHC, JHEP 03 (2011) 100 [arXiv:1010.3434] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    R.S. Gupta, Probing quartic neutral gauge boson couplings using diffractive photon fusion at the LHC, Phys. Rev. D 85 (2012) 014006 [arXiv:1111.3354] [INSPIRE].ADSGoogle Scholar
  64. [64]
    I. Sahin, Electromagnetic properties of the neutrinos in gamma-proton collision at the LHC, Phys. Rev. D 85 (2012) 033002 [arXiv:1201.4364] [INSPIRE].ADSGoogle Scholar
  65. [65]
    I. Sahin and B. Sahin, Anomalous quartic ZZγγ couplings in γp collision at the LHC, Phys. Rev. D 86 (2012) 115001 [arXiv:1211.3100] [INSPIRE].ADSGoogle Scholar
  66. [66]
    DELPHI collaboration, P. Abreu et al., First evidence of hard scattering processes in single tagged γγ collisions, Phys. Lett. B 342 (1995) 402 [INSPIRE].ADSGoogle Scholar
  67. [67]
    CMS collaboration, Exclusive photon-photon production of muon pairs in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, JHEP 01 (2012) 052 [arXiv:1111.5536] [INSPIRE].ADSGoogle Scholar
  68. [68]
    CMS collaboration, Study of exclusive two-photon production of W + W in pp collisions at \( \sqrt{s} \) = 7 TeV and constraints on anomalous quartic gauge couplings, JHEP 07 (2013) 116 [arXiv:1305.5596] [INSPIRE].ADSGoogle Scholar
  69. [69]
    H1 collaboration, S. Aid et al., Elastic and inelastic photoproduction of J/ψ mesons at HERA, Nucl. Phys. B 472 (1996) 3 [hep-ex/9603005] [INSPIRE].ADSGoogle Scholar
  70. [70]
    H1 collaboration, C. Adloff et al., Elastic photoproduction of J/ψ and ϒ mesons at HERA, Phys. Lett. B 483 (2000) 23 [hep-ex/0003020] [INSPIRE].Google Scholar
  71. [71]
    M. Drees and D. Zeppenfeld, Production of supersymmetric particles in elastic ep collisions, Phys. Rev. D 39 (1989) 2536 [INSPIRE].ADSGoogle Scholar
  72. [72]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].CrossRefADSGoogle Scholar
  73. [73]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    C.-H. Lee, P.S. Bhupal Dev and R.N. Mohapatra, Natural TeV-scale left-right seesaw mechanism for neutrinos and experimental tests, Phys. Rev. D 88 (2013) 093010 [arXiv:1309.0774] [INSPIRE].ADSGoogle Scholar
  75. [75]
    T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].CrossRefADSMATHGoogle Scholar
  76. [76]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].CrossRefADSGoogle Scholar
  77. [77]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].CrossRefADSGoogle Scholar
  78. [78]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].CrossRefADSGoogle Scholar
  79. [79]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].Google Scholar
  80. [80]
    R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE].CrossRefADSGoogle Scholar
  81. [81]
    R. Gavin, Y. Li, F. Petriello and S. Quackenbush, W physics at the LHC with FEWZ 2.1, Comput. Phys. Commun. 184 (2013) 208 [arXiv:1201.5896] [INSPIRE].Google Scholar
  82. [82]
    M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, First limits on left-right symmetry scale from LHC data, Phys. Rev. D 83 (2011) 115014 [arXiv:1103.1627] [INSPIRE].ADSGoogle Scholar
  83. [83]
    CMS collaboration, Search for leptonic decays of W bosons in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 08 (2012) 023 [arXiv:1204.4764] [INSPIRE].ADSGoogle Scholar
  84. [84]
    A. Avetisyan et al., Methods and results for standard model event generation at \( \sqrt{s} \) = 14 TeV, 33 TeV and 100 TeV proton colliders (a Snowmass whitepaper), arXiv:1308.1636 [INSPIRE].
  85. [85]
    J. Alwall and G. Ingelman, Interpretation of electron proton scattering at low Q 2, Phys. Lett. B 596 (2004) 77 [hep-ph/0402248] [INSPIRE].CrossRefADSGoogle Scholar
  86. [86]
    E.J. Williams, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae, Phys. Rev. 45 (1934) 729 [INSPIRE].CrossRefADSGoogle Scholar
  87. [87]
    C.F. von Weizsacker, Radiation emitted in collisions of very fast electrons, Z. Phys. 88 (1934) 612 [INSPIRE].CrossRefADSGoogle Scholar
  88. [88]
    ATLAS collaboration, Expected performance of the ATLAS experimentDetector, trigger and physics, arXiv:0901.0512 [INSPIRE].
  89. [89]
    CMS collaboration, Identification of b-quark jets with the CMS experiment, 2013 JINST 8 P04013 [arXiv:1211.4462] [INSPIRE].
  90. [90]
    J.M. Campbell and R.K. Ellis, \( t\overline{t}{W}^{\pm } \) production and decay at NLO, JHEP 07 (2012) 052 [arXiv:1204.5678] [INSPIRE].CrossRefADSGoogle Scholar
  91. [91]
    ATLAS collaboration, Inclusive search for same-sign dilepton signatures in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 10 (2011) 107 [arXiv:1108.0366] [INSPIRE].ADSGoogle Scholar
  92. [92]
    CMS collaboration, Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC, JHEP 06 (2011) 077 [arXiv:1104.3168] [INSPIRE].ADSGoogle Scholar
  93. [93]
    T. Binoth, G. Ossola, C.G. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP 06 (2008) 082 [arXiv:0804.0350] [INSPIRE].CrossRefADSGoogle Scholar
  94. [94]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].CrossRefADSMATHGoogle Scholar
  95. [95]
    J.J. Sakurai and D. Schildknecht, Generalized vector dominance and inelastic electron-proton scattering, Phys. Lett. B 40 (1972) 121 [INSPIRE].CrossRefADSGoogle Scholar
  96. [96]
    M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].
  97. [97]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSanto AndréBrazil
  2. 2.Pittsburgh Particle physics, Astronomy, and Cosmology Center Department of Physics & AstronomyUniversity of PittsburghPittsburghU.S.A.
  3. 3.Korea Institute for Advanced Study (KIAS)SeoulKorea

Personalised recommendations