Journal of High Energy Physics

, 2015:69 | Cite as

Spinor fields classification in arbitrary dimensions and new classes of spinor fields on 7-manifolds

  • L. Bonora
  • K. P. S. de Brito
  • Roldão da Rocha
Open Access
Regular Article - Theoretical Physics

Abstract

A classification of spinor fields according to the associated bilinear covariants is constructed in arbitrary dimensions and metric signatures, generalizing Lounesto’s 4D spinor field classification. In such a generalized classification a basic role is played by the geometric Fierz identities. In 4D Minkowski spacetime the standard bilinear covariants can be either null or non-null — with the exception of the current density which is invariably different from zero for physical reasons — and sweep all types of spinor fields, including Dirac, Weyl, Majorana and more generally flagpoles, flag-dipoles and dipole spinor fields. To obtain an analogous classification in higher dimensions we use the Fierz identities, which constrain the covariant bilinears in the spinor fields and force some of them to vanish. A generalized graded Fierz aggregate is moreover obtained in such a context simply from the completeness relation. We analyze the particular and important case of Riemannian 7-manifolds, where the Majorana spinor fields turn out to have a quite special place. In particular, at variance with spinor fields in 4D Minkowski spacetime that are classified in six disjoint classes, spinors in Riemannian 7-manifolds are shown to be classified, according to the bilinear covariants: (a) in just one class, in the real case of Majorana spinors; (b) in four classes, in the most general case. Much like new classes of spinor fields in 4D Minkowski spacetime have been evincing new possibilities in physics, we think these new classes of spinor fields in seven dimensions are, in particular, potential candidates for new solutions in the compactification of supergravity on a seven-dimensional manifold and its exotic versions.

Keywords

Differential and Algebraic Geometry M-Theory 

References

  1. [1]
    C.I. Lazaroiu, E.M. Babalic and I.A. Coman, The geometric algebra of Fierz identities in arbitrary dimensions and signatures, JHEP 09 (2013) 156 [arXiv:1304.4403] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    E.-M. Babalic and C.-I. Lazaroiu, Revisiting eight-manifold flux compactifications of M-theory using geometric algebra techniques, Rom. Journ. Phys. 58 (2013) 414 [arXiv:1301.5106] [INSPIRE].MathSciNetGoogle Scholar
  3. [3]
    S. Okubo, Representation of Clifford algebras and its applications, Math. Jap. 41 (1995) 59 [hep-th/9408165] [INSPIRE].MATHMathSciNetGoogle Scholar
  4. [4]
    L.S. Randriamihamison, Identites de Fierz et formes bilineaires dans les espaces spinoriels, J. Geom. Phys. 10 (1992) 19.CrossRefADSMATHMathSciNetGoogle Scholar
  5. [5]
    Y. Liao and J.-Y. Liu, Generalized Fierz identities and applications to spin-3/2 particles, Eur. Phys. J. Plus 127 (2012) 121 [arXiv:1206.5141] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    E.O. Korman and G. Sparling, Bilinear forms and Fierz identities for real spin representations, Adv. Appl. Clifford Algebras 22 (2012) 329 [arXiv:0901.0580] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    F. Reifler and R. Morris, A gauge symmetric approach to Fierz identities, J. Math. Phys. 27 (1986) 2803 [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  8. [8]
    Y. Takahashi, Reconstruction of spinor from Fierz identities, Phys. Rev. D 26 (1982) 2169 [INSPIRE].ADSGoogle Scholar
  9. [9]
    R.A. Mosna and J. Vaz, Quantum tomography for Dirac spinors, Phys. Lett. A 315 (2003) 418 [quant-ph/0303072] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    C.C. Nishi, Simple derivation of general Fierz-like identities, Am. J. Phys. 73 (2005) 1160 [hep-ph/0412245] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    J.F. Nieves and P.B. Pal, Generalized Fierz identities, Am. J. Phys. 72 (2004) 1100 [hep-ph/0306087] [INSPIRE].
  12. [12]
    S. Rodriguez-Romo, An analysis of Fierz identities, factorization and inversion theorems, Found. Phys. 23 (1993) 1535 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    J. Pezzaglia, William M., Generalized Fierz identities and the superselection rule for geometric multispinors, in Spinors, twistors, Clifford algebras and quantum deformations, Z. Oziewicz et al. eds., Kluwer, (1993), gr-qc/9211018 [INSPIRE].
  14. [14]
    S. Naito, K. Osada and T. Fukui, Fierz identities and invariance of eleven-dimensional supergravity action, Phys. Rev. D 34 (1986) 536 [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    M. Baake, M. Reinicke and V. Rittenberg, Fierz identities for real Clifford algebras and the number of supercharges, J. Math. Phys. 26 (1985) 1070 [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  16. [16]
    H.L. Carrion, M. Rojas and F. Toppan, Quaternionic and octonionic spinors: a classification, JHEP 04 (2003) 040 [hep-th/0302113] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  17. [17]
    L.V. Avdeev, On Fierz identities in noninteger dimensions, Theor. Math. Phys. 58 (1984) 203 [INSPIRE].CrossRefMathSciNetGoogle Scholar
  18. [18]
    P. Lounesto, Clifford algebras and spinors, 2nd edition, Cambridge Univeristy Press, Cambridge U.K. (2002).Google Scholar
  19. [19]
    A. Basak, J.R. Bhatt, S. Shankaranarayanan and K.V. Prasantha Varma, Attractor behaviour in ELKO cosmology, JCAP 04 (2013) 025 [arXiv:1212.3445] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    A.E. Bernardini and R. da Rocha, Dynamical dispersion relation for ELKO dark spinor fields, Phys. Lett. B 717 (2012) 238 [arXiv:1203.1049] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    D.V. Ahluwalia, C.-Y. Lee, D. Schritt and T.F. Watson, Elko as self-interacting fermionic dark matter with axis of locality, Phys. Lett. B 687 (2010) 248 [arXiv:0804.1854] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    D.V. Ahluwalia, C.-Y. Lee and D. Schritt, Self-interacting Elko dark matter with an axis of locality, Phys. Rev. D 83 (2011) 065017 [arXiv:0911.2947] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R. da Rocha, A.E. Bernardini and J.M. Hoff da Silva, Exotic dark spinor fields, JHEP 04 (2011) 110 [arXiv:1103.4759] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    R. da Rocha and J. Rodrigues, Waldyr Alves, Where are ELKO spinor fields in Lounesto spinor field classification?, Mod. Phys. Lett. A 21 (2006) 65 [math-ph/0506075] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    R. da Rocha, L. Fabbri, J.M. Hoff da Silva, R.T. Cavalcanti and J.A. Silva-Neto, Flag-dipole spinor fields in ESK gravities, J. Math. Phys. 54 (2013) 102505 [arXiv:1302.2262] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    R.T. Cavalcanti, Classification of singular spinor fields and other mass dimension one fermions, Int. J. Mod. Phys. D 23 (2014) 1444002 [arXiv:1408.0720] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    J.M. Hoff da Silva and R. da Rocha, Unfolding physics from the algebraic classification of spinor fields, Phys. Lett. B 718 (2013) 1519 [arXiv:1212.2406] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    R. da Rocha and J.M. Hoff da Silva, Hawking radiation from Elko particles tunnelling across black strings horizon, Europhys. Lett. 107 (2014) 50001 [arXiv:1408.2402] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    R. da Rocha and J.M. Hoff da Silva, ELKO spinor fields: lagrangians for gravity derived from supergravity, Int. J. Geom. Meth. Mod. Phys. 6 (2009) 461 [arXiv:0901.0883] [INSPIRE].CrossRefMATHGoogle Scholar
  30. [30]
    R. da Rocha and J.G. Pereira, The quadratic spinor lagrangian, axial torsion current and generalizations, Int. J. Mod. Phys. D 16 (2007) 1653 [gr-qc/0703076] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    R. da Rocha and J.M. Hoff da Silva, ELKO, flagpole and flag-dipole spinor fields and the instanton Hopf fibration, Adv. Appl. Clifford Algebras 20 (2010) 847 [arXiv:0811.2717] [INSPIRE].CrossRefMATHGoogle Scholar
  32. [32]
    M. Dias, F. de Campos and J.M. Hoff da Silva, Exploring Elko typical signature, Phys. Lett. B 706 (2012) 352 [arXiv:1012.4642] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    D.V. Ahluwalia, On a local mass dimension one Fermi field of spin one-half and the theoretical crevice that allows it, arXiv:1305.7509 [INSPIRE].
  34. [34]
    E. Cremmer, B. Julia and J. Scherk, Supergravity theory in eleven-dimensions, Phys. Lett. B 76 (1978) 409 [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    F. Englert, M. Rooman and P. Spindel, Supersymmetry breaking by torsion and the Ricci flat squashed seven spheres, Phys. Lett. B 127 (1983) 47 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  36. [36]
    B. Biran, F. Englert, B. de Wit and H. Nicolai, Gauged N = 8 supergravity and its breaking from spontaneous compactification, Phys. Lett. B 124 (1983) 45 [Erratum ibid. B 128 (1983) 461] [INSPIRE].
  37. [37]
    M. Cederwall and C.R. Preitschopf, S 7 and S 7 (Kac-Moody algebra), Commun. Math. Phys. 167 (1995) 373 [hep-th/9309030] [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  38. [38]
    R. da Rocha and J. Vaz, Jayme, Clifford algebra-parametrized octonions and generalizations, J. Algebra 301 (2011) 459 [math-ph/0603053] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    J.P. Crawford, On the algebra of Dirac bispinor densities: factorization and inversion theorems, J. Math. Phys. 26 (1985) 1429.CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    R.A. Mosna and W.A. Rodrigues Jr., The bundles of algebraic and Dirac-hestenes spinor fields, J. Math. Phys. 45 (2004) 2945 [math-ph/0212033] [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  41. [41]
    P. Budinich, From the geometry of pure spinors with their division algebras to fermions physics, Found. Phys. 32 (2002) 1347 [hep-th/0107158] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  42. [42]
    N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring, JHEP 09 (2004) 047 [hep-th/0406055] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    N. Berkovits and P.S. Howe, Ten-dimensional supergravity constraints from the pure spinor formalism for the superstring, Nucl. Phys. B 635 (2002) 75 [hep-th/0112160] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    W.A. Rodrigues and E. Capelas de Oliveira, The many faces of Maxwell, Dirac and Einstein equations: a Clifford bundle approach, Lect. Notes Phys. 722 (2007) 1.CrossRefMathSciNetGoogle Scholar
  45. [45]
    L. Bonora, F.F. Ruffino and R. Savelli, Revisiting pinors, spinors and orientability, arXiv:0907.4334 [INSPIRE].
  46. [46]
    C.-I. Lazaroiu and E.-M. Babalic, Geometric algebra techniques in flux compactifications (II), JHEP 06 (2013) 054 [arXiv:1212.6918] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    I. Benn and R. Tucker, An introduction to spinors and geometry with applications in physics, Adam Hilger, Bristol U.K. (1987).Google Scholar
  48. [48]
    S. Okubo, Real representations of finite Clifford algebras. 1. Classification, J. Math. Phys. 32 (1991) 1657 [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  49. [49]
    D.V. Alekseevsky, V. Cortés, Classification of N-(super)-extended Poincaré algebras and bilinear invariants of the spinor representation of Spin(p, q), math/9511215.
  50. [50]
    P. Kaste, R. Minasian and A. Tomasiello, Supersymmetric M-theory compactifications with fluxes on seven-manifolds and G structures, JHEP 07 (2003) 004 [hep-th/0303127] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  51. [51]
    K. Behrndt and C. Jeschek, Fluxes in M-theory on 7-manifolds: G 2 , SU(3) and SU(2)-structures, hep-th/0406138 [INSPIRE].
  52. [52]
    T. House and A. Micu, M-theory compactifications on manifolds with G 2 structure, Class. Quant. Grav. 22 (2005) 1709 [hep-th/0412006] [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  53. [53]
    K. Yamagishi, Supergravity on seven-dimensional homotopy spheres, Phys. Lett. B 134 (1984) 47 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • L. Bonora
    • 1
  • K. P. S. de Brito
    • 2
  • Roldão da Rocha
    • 1
    • 3
  1. 1.International School for Advanced Studies (SISSA)TriesteItaly
  2. 2.CCNH, Universidade Federal do ABCSanto AndréBrazil
  3. 3.CMCC, Universidade Federal do ABCSanto AndréBrazil

Personalised recommendations