Advertisement

Journal of High Energy Physics

, 2015:48 | Cite as

Determination of the θ 23 octant in LBNO

  • C. R. DasEmail author
  • Jukka Maalampi
  • João Pulido
  • Sampsa Vihonen
Open Access
Regular Article - Experimental Physics

Abstract

According to the recent results of the neutrino oscillation experiment MINOS, the neutrino mixing angle θ 23 may not be maximal (45°). Two nearly degenerate solutions are possible, one in the lower octant (LO) where θ 23 < 45°, and one in the higher octant (HO) where θ 23 > 45°. Long baseline experiments measuring the ν μ → ν e are capable of resolving this degeneracy. In this work we study the potential of the planned European LBNO experiment to distinguish between the LO and HO solutions.

Keywords

Oscillation Neutrino Detectors and Telescopes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.V. Forero, M. Tortola and J.W.F. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].ADSGoogle Scholar
  2. [2]
    G.L. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    G.L. Fogli and E. Lisi, Tests of three flavor mixing in long baseline neutrino oscillation experiments, Phys. Rev. D 54 (1996) 3667 [hep-ph/9604415] [INSPIRE].ADSGoogle Scholar
  5. [5]
    A. Chatterjee, P. Ghoshal, S. Goswami and S.K. Raut, Octant sensitivity for large θ 13 in atmospheric and long baseline neutrino experiments, JHEP 06 (2013) 010 [arXiv:1302.1370] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    S.K. Raut, Effect of non-zero θ 13 on the measurement of θ 23, Mod. Phys. Lett. A 28 (2013) 1350093 [arXiv:1209.5658] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    M. Ghosh, P. Ghoshal, S. Goswami and S.K. Raut, Synergies between neutrino oscillation experiments: anadequateconfiguration for LBNO, JHEP 03 (2014) 094 [arXiv:1308.5979] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    K. Bora, D. Dutta and P. Ghoshal, Determining the octant of θ 23 at LBNE in conjunction with reactor experiments, arXiv:1405.7482 [INSPIRE].
  9. [9]
    MINOS collaboration, P. Adamson et al., Combined analysis of ν μ disappearance and ν μν e appearance in MINOS using accelerator and atmospheric neutrinos, Phys. Rev. Lett. 112 (2014) 191801 [arXiv:1403.0867] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    T2K collaboration, K. Abe et al., Precise measurement of the neutrino mixing parameter θ 23 from muon neutrino disappearance in an off-axis beam, Phys. Rev. Lett. 112 (2014) 181801 [arXiv:1403.1532] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    S.K. Agarwalla, Physics potential of long-baseline experiments, Adv. High Energy Phys. 2014 (2014) 457803 [arXiv:1401.4705] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    A. Stahl et al., Expression of interest for a very Long Baseline Neutrino Oscillation experiment (LBNO), CERN-SPSC-2012-021 (2012).
  13. [13]
    A. Rubbia, Experiments for CP-violation: a giant liquid argon scintillation, Cerenkov and charge imaging experiment?, hep-ph/0402110 [INSPIRE].
  14. [14]
    A. Rubbia, Underground Neutrino Detectors for Particle and Astroparticle Science: The Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER), J. Phys. Conf. Ser. 171 (2009) 012020 [arXiv:0908.1286] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    ISS Detector Working Group collaboration, T. Abe et al., Detectors and flux instrumentation for future neutrino facilities, 2009 JINST 4 T05001 [arXiv:0712.4129] [INSPIRE].
  16. [16]
    A. Cervera, A. Laing, J. Martin-Albo and F.J.P. Soler, Performance of the MIND detector at a neutrino factory using realistic muon reconstruction, Nucl. Instrum. Meth. A 624 (2010) 601 [arXiv:1004.0358] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    Y. Papaphilippou et al., Design options of a high-power proton synchrotron for LAGUNA-LBNO, in the proceedings of the 4th International Particle Accelerator Conference (IPAC2013), May 12-17, Shanghai, China (2013).Google Scholar
  18. [18]
    S. Choubey and A. Ghosh, Determining the octant of θ 23 with PINGU, T2K, NOνA and reactor data, JHEP 11 (2013) 166 [arXiv:1309.5760] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    LAGUNA-LBNO collaboration, S.K. Agarwalla et al., The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment, JHEP 05 (2014) 094 [arXiv:1312.6520] [INSPIRE].
  20. [20]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    K. Loo, private communications, University of Jyväskylä, Finland.Google Scholar
  23. [23]
    S.K. Agarwalla, T. Li and A. Rubbia, An incremental approach to unravel the neutrino mass hierarchy and CP-violation with a long-baseline Superbeam for large θ 13, JHEP 05 (2012) 154 [arXiv:1109.6526] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    P. Coloma, T. Li and S. Pascoli, A comparative study of long-baseline superbeams within LAGUNA for large θ 13, arXiv:1206.4038 [INSPIRE].
  25. [25]
    P. Ballet, private communications, Durham University, U.K.Google Scholar
  26. [26]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001, http://pdg.lbl.gov [INSPIRE].Google Scholar
  27. [27]
    E. Kozlovskaya, J. Peltoniemi and J. Sarkamo, The density distribution in the Earth along the CERN-Pyhasalmi baseline and its effect on neutrino oscillations, hep-ph/0305042 [INSPIRE].
  28. [28]
    A. Dziewonski and D. Anderson, Preliminary reference earth model, Phys. Earth Planet. Interiors 25 (1981) 297.CrossRefADSGoogle Scholar
  29. [29]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • C. R. Das
    • 1
    • 2
    • 3
    Email author
  • Jukka Maalampi
    • 1
  • João Pulido
    • 2
  • Sampsa Vihonen
    • 1
  1. 1.University of Jyvaskyla, Department of PhysicsJyvaskylaFinland
  2. 2.Centro de Física Teórica das Partículas (CFTP) Departamento de FísicaInstituto Superior Técnico Av. Rovisco PaisLisboaPortugal
  3. 3.Theoretical Physics DivisionPhysical Research LaboratoryAhmedabadIndia

Personalised recommendations