Advertisement

Journal of High Energy Physics

, 2015:41 | Cite as

Slepton pair production in association with a jet: NLO-QCD corrections and parton-shower effects

  • Barbara Jäger
  • Andreas von Manteuffel
  • Stephan ThierEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We present a calculation of the next-to-leading order QCD corrections to slepton pair production in association with a jet at the LHC together with their implementation in the POWHEG BOX. For the simulation of parton-shower effects and the decays of the sleptons we employ the multi-purpose Monte-Carlo program PYTHIA. We discuss the impact of next-to-leading order QCD corrections on experimentally accessible distributions and illustrate how the parton shower can modify observables that are sensitive to QCD radiation effects. Having full control on the hard jet in the process, we provide precise predictions also for monojet analyses.

Keywords

Monte Carlo Simulations NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS physics results webpage, https://twiki.cern.ch/twiki/bin/view/AtlasPublic.
  4. [4]
  5. [5]
    ATLAS collaboration, Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 718 (2013) 879[arXiv:1208.2884] [INSPIRE].ADSGoogle Scholar
  6. [6]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS detector, Phys. Lett. B 718 (2013) 841 [arXiv:1208.3144] [INSPIRE].ADSGoogle Scholar
  7. [7]
    CMS collaboration, Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 11 (2012) 147 [arXiv:1209.6620] [INSPIRE].ADSGoogle Scholar
  8. [8]
    H.-U. Martyn and G.A. Blair, Determination of sparticle masses and SUSY parameters, hep-ph/9910416 [INSPIRE].
  9. [9]
    A. Freitas, A. von Manteuffel and P.M. Zerwas, Slepton production at e + e and e e linear colliders, Eur. Phys. J. C 34 (2004) 487 [hep-ph/0310182] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Freitas, A. von Manteuffel and P.M. Zerwas, Slepton production at e + e and e e linear colliders: addendum, Eur. Phys. J. C 40 (2005) 435 [hep-ph/0408341] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Freitas, Feasibility of slepton precision measurements at a muon collider, arXiv:1107.3853 [INSPIRE].
  12. [12]
    H. Baer, B.W. Harris and M.H. Reno, Next-to-leading order slepton pair production at hadron colliders, Phys. Rev. D 57 (1998) 5871 [hep-ph/9712315] [INSPIRE].ADSGoogle Scholar
  13. [13]
    W. Beenakker et al., The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE].
  14. [14]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
  15. [15]
    G. Bozzi, B. Fuks and M. Klasen, Transverse-momentum resummation for slepton-pair production at the CERN LHC, Phys. Rev. D 74 (2006) 015001 [hep-ph/0603074] [INSPIRE].ADSGoogle Scholar
  16. [16]
    G. Bozzi, B. Fuks and M. Klasen, Threshold resummation for slepton-pair production at hadron colliders, Nucl. Phys. B 777 (2007) 157 [hep-ph/0701202] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. Bozzi, B. Fuks and M. Klasen, Joint resummation for slepton pair production at hadron colliders, Nucl. Phys. B 794 (2008) 46 [arXiv:0709.3057] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Broggio, M. Neubert and L. Vernazza, Soft-gluon resummation for slepton-pair production at hadron colliders, JHEP 05 (2012) 151 [arXiv:1111.6624] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    I. Fridman-Rojas and P. Richardson, Next-to-leading order simulation of slepton pair production, arXiv:1208.0279 [INSPIRE].
  20. [20]
    B. Jager, A. von Manteuffel and S. Thier, Slepton pair production in the POWHEG BOX, JHEP 10 (2012) 130 [arXiv:1208.2953] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Marchesini et al., HERWIG: a Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1 — April 1991, Comput. Phys. Commun. 67 (1992) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11, Japan (1992) [INSPIRE].
  28. [28]
    T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.M. Campbell et al., NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM, JHEP 07 (2012) 092 [arXiv:1202.5475] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Gavin et al., Matching squark pair production at NLO with parton showers, JHEP 10 (2013) 187 [arXiv:1305.4061] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G.-C. Cho et al., Weak boson fusion production of supersymmetric particles at the CERN LHC, Phys. Rev. D 73 (2006) 054002 [hep-ph/0601063] [INSPIRE].ADSGoogle Scholar
  33. [33]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    W. Hollik and D. Stöckinger, Regularization and supersymmetry restoring counterterms in supersymmetric QCD, Eur. Phys. J. C 20 (2001) 105 [hep-ph/0103009] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J.C. Collins, F. Wilczek and A. Zee, Low-energy manifestations of heavy particles: application to the neutral current, Phys. Rev. D 18 (1978) 242 [INSPIRE].ADSGoogle Scholar
  36. [36]
    P. Nason, S. Dawson and R.K. Ellis, The one particle inclusive differential cross-section for heavy quark production in hadronic collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. B 335 (1990) 260] [INSPIRE].
  37. [37]
    S. Berge, W. Hollik, W.M. Mosle and D. Wackeroth, SUSY QCD one-loop effects in (un)polarized top-pair production at hadron colliders, Phys. Rev. D 76 (2007) 034016 [hep-ph/0703016] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.S. Bell and R. Jackiw, A PCAC puzzle: π 0 → γγ in the σ-model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D. Kreimer, The γ5 problem and anomalies: a Clifford algebra approach, Phys. Lett. B 237 (1990) 59 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    J.G. Korner, D. Kreimer and K. Schilcher, A practicable γ5 scheme in dimensional regularization, Z. Phys. C 54 (1992) 503 [INSPIRE].ADSGoogle Scholar
  42. [42]
    S.A. Larin, The renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  44. [44]
    J. Rosiek, Complete set of Feynman rules for the MSSM: erratum, hep-ph/9511250 [INSPIRE].
  45. [45]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  46. [46]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    C. Studerus, Reduze-Feynman integral reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    A. von Manteuffel and C. Studerus, Reduze 2 — distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].
  49. [49]
    C. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symbol. Comput. 33 (2002) 1 [cs.sc/0004015].CrossRefzbMATHMathSciNetGoogle Scholar
  50. [50]
    R.H. Lewis, Computer algebra system Fermat webpage, http://www.bway.net/∼lewis.
  51. [51]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G.J. van Oldenborgh, FF: a package to evaluate one loop Feynman diagrams, Comput. Phys. Commun. 66 (1991) 1 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    T. Hahn, A Mathematica interface for FormCalc-generated code, Comput. Phys. Commun. 178 (2008) 217 [hep-ph/0611273] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  57. [57]
    S. Alioli, S.-O. Moch and P. Uwer, Hadronic top-quark pair-production with one jet and parton showering, JHEP 01 (2012) 137 [arXiv:1110.5251] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].
  61. [61]
    P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    B.C. Allanach et al., SUSY Les Houches accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].ADSGoogle Scholar
  64. [64]
    CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W , Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].Google Scholar
  65. [65]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    R. Gavin and M.K. Trenkel, SUSY QCD corrections to electroweak gauge boson production with an associated jet at the LHC, JHEP 01 (2012) 036 [arXiv:1109.3445] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M.R. Buckley, J.D. Lykken, C. Rogan and M. Spiropulu, Super-razor and searches for sleptons and charginos at the LHC, Phys. Rev. D 89 (2014) 055020 [arXiv:1310.4827] [INSPIRE].ADSGoogle Scholar
  70. [70]
    T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W , W Z and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J.F. Gunion and S. Mrenna, A study of SUSY signatures at the Tevatron in models with near mass degeneracy of the lightest chargino and neutralino, Phys. Rev. D 62 (2000) 015002 [hep-ph/9906270] [INSPIRE].ADSGoogle Scholar
  72. [72]
    C. Han et al., Probing light Higgsinos in natural SUSY from monojet signals at the LHC, JHEP 02 (2014) 049 [arXiv:1310.4274] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    P. Schwaller and J. Zurita, Compressed electroweakino spectra at the LHC, JHEP 03 (2014) 060 [arXiv:1312.7350] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    H. Baer, A. Mustafayev and X. Tata, Monojets and mono-photons from light higgsino pair production at LHC14, Phys. Rev. D 89 (2014) 055007 [arXiv:1401.1162] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Barbara Jäger
    • 1
  • Andreas von Manteuffel
    • 2
  • Stephan Thier
    • 2
    • 3
    Email author
  1. 1.Institute for Theoretical PhysicsUniversity of TübingenTübingenGermany
  2. 2.PRISMA Cluster of Excellence, Institute of PhysicsJohannes Gutenberg UniversityMainzGermany
  3. 3.II. Institute for Theoretical PhysicsHamburg UniversityHamburgGermany

Personalised recommendations