Advertisement

Journal of High Energy Physics

, 2015:38 | Cite as

Mass effects in the Higgs-gluon coupling: boosted vs. off-shell production

  • Malte Buschmann
  • Dorival Gonçalves
  • Silvan Kuttimalai
  • Marek Schönherr
  • Frank Krauss
  • Tilman Plehn
Open Access
Regular Article - Theoretical Physics

Abstract

In the upcoming LHC run we will be able to probe the structure of the loopinduced Higgs-gluon coupling through kinematics. First, we establish state-of-the-art simulations with up to two jets to next-to-leading order including top mass effects. They allow us to search for deviations from the low-energy limits in boosted Higgs production. In addition, the size of the top mass effects suggests that they should generally be included in Higgs studies at the LHC. Next, we show how off-shell Higgs production with a decay to four leptons is sensitive to the same top mass effects. We compare the potential of both methods based on the same top-Higgs Lagrangian. Finally, we comment on related model assumptions required for a Higgs width measurement.

Keywords

QCD Phenomenology Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].ADSGoogle Scholar
  2. [2]
    P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    P.W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons, Phys. Rev. 145 (1966) 1156 [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].ADSGoogle Scholar
  6. [6]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  7. [7]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings from LHC Data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D. López-Val, T. Plehn and M. Rauch, Measuring Extended Higgs Sectors as a Consistent Free Couplings Model, JHEP 10 (2013) 134 [arXiv:1308.1979] [INSPIRE].ADSGoogle Scholar
  10. [10]
    ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170 (2012).
  11. [11]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045.
  12. [12]
    A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].
  13. [13]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, Eur. Phys. J. C 73 (2013) 2512 [arXiv:1303.6591] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J. Ellis and T. You, Updated Global Analysis of Higgs Couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].ADSGoogle Scholar
  17. [17]
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Azatov and J. Galloway, Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders, Int. J. Mod. Phys. A 28 (2013) 1330004 [arXiv:1212.1380] [INSPIRE].ADSGoogle Scholar
  19. [19]
    I. Brivio et al., Disentangling a dynamical Higgs, JHEP 03 (2014) 024 [arXiv:1311.1823] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].ADSGoogle Scholar
  22. [22]
    C. Englert et al., Precision Measurements of Higgs Couplings: Implications for New Physics Scales, J. Phys. G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. Ellis, V. Sanz and T. You, Complete Higgs Sector Constraints on Dimension-6 Operators, JHEP 07 (2014) 036 [arXiv:1404.3667] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S. Dawson, I.M. Lewis and M. Zeng, Effective field theory for Higgs boson plus jet production, Phys. Rev. D 90 (2014) 093007 [arXiv:1409.6299] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Belyaev and L. Reina, pp\( t\overline{t}H \) , Hτ + τ : Toward a model independent determination of the Higgs boson couplings at the LHC, JHEP 08 (2002) 041 [hep-ph/0205270] [INSPIRE].ADSGoogle Scholar
  26. [26]
    E. Gross and L. Zivkovic, \( t\overline{t}H\to t\overline{t}{\tau}^{+}{\tau}^{-} \) : Toward the Measurement of the top-Yukawa Coupling, Eur. Phys. J. C 59 (2009) 731 [INSPIRE].ADSGoogle Scholar
  27. [27]
    T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C. Boddy, S. Farrington and C. Hays, Higgs boson coupling sensitivity at the LHC using H-¿tau tau decays, Phys. Rev. D 86 (2012) 073009 [arXiv:1208.0769] [INSPIRE].ADSGoogle Scholar
  29. [29]
    P. Artoisenet, P. de Aquino, F. Maltoni and O. Mattelaer, Unravelling tth via the Matrix Element Method, Phys. Rev. Lett. 111 (2013) 091802 [arXiv:1304.6414] [INSPIRE].ADSGoogle Scholar
  30. [30]
    P. Agrawal, S. Bandyopadhyay and S.P. Das, Dilepton Signatures of the Higgs Boson with Tau-jet Tagging, arXiv:1308.6511 [INSPIRE].
  31. [31]
    M.R. Buckley, T. Plehn, T. Schell and M. Takeuchi, Buckets of Higgs and Tops, JHEP 02 (2014) 130 [arXiv:1310.6034] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP 05 (2013) 022 [arXiv:1211.3736] [INSPIRE].ADSGoogle Scholar
  33. [33]
    S. Biswas, E. Gabrielli, F. Margaroli and B. Mele, Direct constraints on the top-Higgs coupling from the 8 TeV LHC data, JHEP 07 (2013) 073 [arXiv:1304.1822] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J. Ellis, D.S. Hwang, K. Sakurai and M. Takeuchi, Disentangling Higgs-Top Couplings in Associated Production, JHEP 04 (2014) 004 [arXiv:1312.5736] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C. Englert and E. Re, Bounding the top Yukawa coupling with Higgs-associated single-top production, Phys. Rev. D 89 (2014) 073020 [arXiv:1402.0445] [INSPIRE].ADSGoogle Scholar
  36. [36]
    W.J. Stirling and D.J. Summers, Production of an intermediate mass Higgs boson in association with a single top quark at LHC and SSC, Phys. Lett. B 283 (1992) 411 [INSPIRE].ADSGoogle Scholar
  37. [37]
    F. Maltoni, D.L. Rainwater and S. Willenbrock, Measuring the top quark Yukawa coupling at hadron colliders via \( t\overline{t}H \) , HW + W , Phys. Rev. D 66 (2002) 034022 [hep-ph/0202205] [INSPIRE].ADSGoogle Scholar
  38. [38]
    D.E. Morrissey, T. Plehn and T.M.P. Tait, Physics searches at the LHC, Phys. Rept. 515 (2012) 1 [arXiv:0912.3259] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSGoogle Scholar
  40. [40]
    M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].Google Scholar
  41. [41]
    B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].Google Scholar
  42. [42]
    T. Plehn, Lectures on LHC Physics, Lect. Notes Phys. 844 (2012) 1 [arXiv:0910.4182] [INSPIRE].Google Scholar
  43. [43]
    D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].ADSGoogle Scholar
  46. [46]
    S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].ADSzbMATHGoogle Scholar
  49. [49]
    U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett. 89 (2002) 151801 [hep-ph/0206024] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys. B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    X. Li and M.B. Voloshin, Remarks on double Higgs boson production by gluon fusion at threshold, Phys. Rev. D 89 (2014) 013012 [arXiv:1311.5156] [INSPIRE].ADSGoogle Scholar
  52. [52]
    R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Higgs Decay to τ + τ : A Possible Signature of Intermediate Mass Higgs Bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [INSPIRE].ADSGoogle Scholar
  53. [53]
    U. Baur and E.W.N. Glover, Higgs Boson Production at Large Transverse Momentum in Hadronic Collisions, Nucl. Phys. B 339 (1990) 38 [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Banfi, A. Martin and V. Sanz, Probing top-partners in Higgs+jets, JHEP 08 (2014) 053 [arXiv:1308.4771] [INSPIRE].ADSGoogle Scholar
  55. [55]
    A. Azatov and A. Paul, Probing Higgs couplings with high p T Higgs production, JHEP 01 (2014) 014 [arXiv:1309.5273] [INSPIRE].ADSGoogle Scholar
  56. [56]
    C. Grojean, E. Salvioni, M. Schlaffer and A. Weiler, Very boosted Higgs in gluon fusion, JHEP 05 (2014) 022 [arXiv:1312.3317] [INSPIRE].ADSGoogle Scholar
  57. [57]
    E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP 02 (2012) 088 [arXiv:1111.2854] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order α s4, JHEP 08 (2012) 139 [arXiv:1206.0157] [INSPIRE].ADSGoogle Scholar
  59. [59]
    R.V. Harlander and T. Neumann, Probing the nature of the Higgs-gluon coupling, Phys. Rev. D 88 (2013) 074015 [arXiv:1308.2225] [INSPIRE].ADSGoogle Scholar
  60. [60]
    C. Englert, M. McCullough and M. Spannowsky, Gluon-initiated associated production boosts Higgs physics, Phys. Rev. D 89 (2014) 013013 [arXiv:1310.4828] [INSPIRE].ADSGoogle Scholar
  61. [61]
    M. Buschmann, C. Englert, D. Goncalves, T. Plehn and M. Spannowsky, Resolving the Higgs-Gluon Coupling with Jets, Phys. Rev. D 90 (2014) 013010 [arXiv:1405.7651] [INSPIRE].ADSGoogle Scholar
  62. [62]
    D.S.M. Alves, M.R. Buckley, P.J. Fox, J.D. Lykken and C.-T. Yu, Stops and Open image in new window : The shape of things to come, Phys. Rev. D 87 (2013) 035016 [arXiv:1205.5805] [INSPIRE].ADSGoogle Scholar
  63. [63]
    S. Bornhauser, M. Drees, S. Grab and J.S. Kim, Light Stop Searches at the LHC in Events with two b-Jets and Missing Energy, Phys. Rev. D 83 (2011) 035008 [arXiv:1011.5508] [INSPIRE].ADSGoogle Scholar
  64. [64]
    N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, JHEP 05 (2012) 057 [arXiv:1111.2830] [INSPIRE].ADSGoogle Scholar
  65. [65]
    Z. Han, A. Katz, D. Krohn and M. Reece, (Light) Stop Signs, JHEP 08 (2012) 083 [arXiv:1205.5808] [INSPIRE].ADSGoogle Scholar
  66. [66]
    G. Bélanger, R.M. Godbole, L. Hartgring and I. Niessen, Top Polarization in Stop Production at the LHC, JHEP 05 (2013) 167 [arXiv:1212.3526] [INSPIRE].ADSGoogle Scholar
  67. [67]
    X.-Q. Li, Z.-G. Si, K. Wang, L. Wang, L. Zhang and G. Zhu, Light Top Squark in Precision Top Quark Sample, Phys. Rev. D 89 (2014) 077703 [arXiv:1311.6874] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Schlaffer, M. Spannowsky, M. Takeuchi, A. Weiler and C. Wymant, Boosted Higgs Shapes, Eur. Phys. J. C 74 (2014) 3120 [arXiv:1405.4295] [INSPIRE].ADSGoogle Scholar
  69. [69]
    N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].ADSGoogle Scholar
  70. [70]
    F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].ADSGoogle Scholar
  71. [71]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full analytic results for gge e + μ μ +, JHEP 04 (2014) 060 [arXiv:1311.3589] [INSPIRE].ADSGoogle Scholar
  72. [72]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC: complementary results from HW W , Phys. Rev. D 89 (2014) 053011 [arXiv:1312.1628] [INSPIRE].ADSGoogle Scholar
  73. [73]
    CMS collaboration, Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002.
  74. [74]
    CMS collaboration, Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs, Phys. Lett. B 736 (2014) 64 [arXiv:1405.3455] [INSPIRE].Google Scholar
  75. [75]
    ATLAS collaboration, Determination of the off-shell Higgs boson signal strength in the high-mass ZZ final state with the ATLAS detector, ATLAS-CONF-2014-042 (2014).
  76. [76]
    C. Englert and M. Spannowsky, Limitations and Opportunities of Off-Shell Coupling Measurements, Phys. Rev. D 90 (2014) 053003 [arXiv:1405.0285] [INSPIRE].ADSGoogle Scholar
  77. [77]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Beyond Geolocating: Constraining Higher Dimensional Operators in H → 4ℓ with Off-Shell Production and More, arXiv:1403.4951 [INSPIRE].
  78. [78]
    E.W.N. Glover and J.J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].ADSGoogle Scholar
  79. [79]
    A. Azatov, C. Grojean, A. Paul and E. Salvioni, Taming the off-shell Higgs boson, arXiv:1406.6338 [INSPIRE].
  80. [80]
    G. Cacciapaglia, A. Deandrea, G. Drieu La Rochelle and J.-B. Flament, Higgs couplings: disentangling New Physics with off-shell measurements, Phys. Rev. Lett. 113 (2014) 201802 [arXiv:1406.1757] [INSPIRE].ADSGoogle Scholar
  81. [81]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].ADSGoogle Scholar
  82. [82]
    F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].ADSGoogle Scholar
  83. [83]
    S. Hoeche, F. Krauss, P. Maierhoefer, S. Pozzorini, M. Schonherr and F. Siegert, Next-to-leading order QCD predictions for top-quark pair production with up to two jets merged with a parton shower, arXiv:1402.6293 [INSPIRE].
  84. [84]
    S. Hoeche, F. Krauss, S. Pozzorini, M. Schoenherr, J.M. Thompson and K.C. Zapp, Triple vector boson production through Higgs-Strahlung with NLO multijet merging, Phys. Rev. D 89 (2014) 093015 [arXiv:1403.7516] [INSPIRE].ADSGoogle Scholar
  85. [85]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSGoogle Scholar
  86. [86]
    S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].ADSGoogle Scholar
  87. [87]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].ADSGoogle Scholar
  88. [88]
    T. Gehrmann, S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO QCD matrix elements + parton showers in e + e hadrons, JHEP 01 (2013) 144 [arXiv:1207.5031] [INSPIRE].ADSGoogle Scholar
  89. [89]
    S. Hoeche, F. Krauss and M. Schonherr, Uncertainties in MEPS@NLO calculations of h+jets, Phys. Rev. D 90 (2014) 014012 [arXiv:1401.7971] [INSPIRE].ADSGoogle Scholar
  90. [90]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSGoogle Scholar
  91. [91]
    A. Denner, S. Dittmaier and L. Hofer, COLLIERA fortran-library for one-loop integrals, PoS(LL2014)071 [arXiv:1407.0087] [INSPIRE].
  92. [92]
    A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].ADSMathSciNetGoogle Scholar
  93. [93]
    A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].ADSMathSciNetGoogle Scholar
  94. [94]
    J. Alwall, Q. Li and F. Maltoni, Matched predictions for Higgs production via heavy-quark loops in the SM and beyond, Phys. Rev. D 85 (2012) 014031 [arXiv:1110.1728] [INSPIRE].ADSGoogle Scholar
  95. [95]
    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].ADSGoogle Scholar
  96. [96]
    F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP 11 (2014) 079 [arXiv:1408.6542] [INSPIRE].ADSGoogle Scholar
  97. [97]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSGoogle Scholar
  98. [98]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].ADSGoogle Scholar
  99. [99]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, W + n-jet predictions at the Large Hadron Collider at next-to-leading order matched with a parton shower, Phys. Rev. Lett. 110 (2013) 052001 [arXiv:1201.5882] [INSPIRE].ADSGoogle Scholar
  100. [100]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSGoogle Scholar
  101. [101]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSGoogle Scholar
  102. [102]
    J.M. Campbell, R.K. Ellis, R. Frederix, P. Nason, C. Oleari and C. Williams, NLO Higgs Boson Production Plus One and Two Jets Using the POWHEG BOX, MadGraph4 and MCFM, JHEP 07 (2012) 092 [arXiv:1202.5475] [INSPIRE].ADSGoogle Scholar
  103. [103]
    J.M. Campbell, R.K. Ellis and C. Williams, MCFMMonte Carlo for FeMtobarn processes, http://mcfm.fnal.gov.
  104. [104]
    F. Campanario, M. Kubocz and D. Zeppenfeld, Gluon-fusion contributions to Φ + 2 Jet production, Phys. Rev. D 84 (2011) 095025 [arXiv:1011.3819] [INSPIRE].ADSGoogle Scholar
  105. [105]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSGoogle Scholar
  106. [106]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSGoogle Scholar
  107. [107]
    M. Grazzini and H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE].ADSGoogle Scholar
  108. [108]
    M. Wiesemann, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni and P. Torrielli, Higgs production in association with bottom quarks, arXiv:1409.5301 [INSPIRE].
  109. [109]
    R.V. Harlander, H. Mantler and M. Wiesemann, Transverse momentum resummation for Higgs production via gluon fusion in the MSSM, JHEP 11 (2014) 116 [arXiv:1409.0531] [INSPIRE].ADSGoogle Scholar
  110. [110]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  111. [111]
    S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSGoogle Scholar
  112. [112]
    T. Plehn, D.L. Rainwater and D. Zeppenfeld, Determining the structure of Higgs couplings at the LHC, Phys. Rev. Lett. 88 (2002) 051801 [hep-ph/0105325] [INSPIRE].ADSGoogle Scholar
  113. [113]
    C. Ruwiedel, N. Wermes and M. Schumacher, Prospects for the measurement of the structure of the coupling of a Higgs boson to weak gauge bosons in weak boson fusion with the ATLAS detector, Eur. Phys. J. C 51 (2007) 385 [INSPIRE].ADSGoogle Scholar
  114. [114]
    G. Klamke and D. Zeppenfeld, Higgs plus two jet production via gluon fusion as a signal at the CERN LHC, JHEP 04 (2007) 052 [hep-ph/0703202] [INSPIRE].ADSGoogle Scholar
  115. [115]
    K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [INSPIRE].ADSGoogle Scholar
  116. [116]
    C. Englert, D. Goncalves-Netto, K. Mawatari and T. Plehn, Higgs Quantum Numbers in Weak Boson Fusion, JHEP 01 (2013) 148 [arXiv:1212.0843] [INSPIRE].ADSGoogle Scholar
  117. [117]
    C. Englert, D. Goncalves, G. Nail and M. Spannowsky, The shape of spins, Phys. Rev. D 88 (2013) 013016 [arXiv:1304.0033] [INSPIRE].ADSGoogle Scholar
  118. [118]
    K. Hagiwara and S. Mukhopadhyay, Azimuthal correlation among jets produced in association with a bottom or top quark pair at the LHC, JHEP 05 (2013) 019 [arXiv:1302.0960] [INSPIRE].ADSGoogle Scholar
  119. [119]
    M.R. Buckley, T. Plehn and M.J. Ramsey-Musolf, Top squark with mass close to the top quark, Phys. Rev. D 90 (2014) 014046 [arXiv:1403.2726] [INSPIRE].ADSGoogle Scholar
  120. [120]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSGoogle Scholar
  121. [121]
    G. Passarino, Higgs CAT, Eur. Phys. J. C 74 (2014) 2866 [arXiv:1312.2397] [INSPIRE].ADSGoogle Scholar
  122. [122]
    M. Bonvini, F. Caola, S. Forte, K. Melnikov and G. Ridolfi, Signal-background interference effects for ggHW + W beyond leading order, Phys. Rev. D 88 (2013) 034032 [arXiv:1304.3053] [INSPIRE].ADSGoogle Scholar
  123. [123]
    N. Cabibbo and A. Maksymowicz, Angular Correlations in Ke 4 Decays and Determination of Low-Energy ππ Phase Shifts, Phys. Rev. 137 (1965) B438 [Erratum ibid. 168 (1968) 1926] [INSPIRE].
  124. [124]
    J.R. Dell’Aquila and C.A. Nelson, P or CP Determination by Sequential Decays: V 1 V 2 Modes With Decays Into \( {\overline{\ell}}_A{\ell}_B \) And/or \( {\overline{q}}_A{q}_B \) , Phys. Rev. D 33 (1986) 80 [INSPIRE].ADSGoogle Scholar
  125. [125]
    J.R. Dell’Aquila and C.A. Nelson, Distinguishing a Spin 0 Technipion and an Elementary Higgs Boson: V 1 V 2 Modes With Decays Into \( {\overline{\ell}}_A{\ell}_B \) And/or \( {\overline{q}}_A{q}_B \), Phys. Rev. D 33 (1986) 93 [INSPIRE].ADSGoogle Scholar
  126. [126]
    C.A. Nelson, Correlation Between Decay Planes in Higgs Boson Decays Into W Pair (Into Z Pair), Phys. Rev. D 37 (1988) 1220 [INSPIRE].ADSGoogle Scholar
  127. [127]
    M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings at a Linear Collider, Europhys. Lett. 101 (2013) 51001 [arXiv:1301.1322] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Malte Buschmann
    • 1
    • 2
  • Dorival Gonçalves
    • 2
  • Silvan Kuttimalai
    • 2
  • Marek Schönherr
    • 2
  • Frank Krauss
    • 2
  • Tilman Plehn
    • 1
  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  2. 2.Institute for Particle Physics Phenomenology, Department of PhysicsDurham UniversityDurhamU.K.

Personalised recommendations