Journal of High Energy Physics

, 2015:35 | Cite as

Intermediate scalings in holographic RG flows and conductivities

  • Jyotirmoy Bhattacharya
  • Sera Cremonini
  • Blaise Goutéraux
Open Access
Regular Article - Theoretical Physics


We construct numerically finite density domain-wall solutions which interpolate between two AdS 4 fixed points and exhibit an intermediate regime of hyperscaling violation, with or without Lifshitz scaling. Such RG flows can be realized in gravitational models containing a dilatonic scalar and a massive vector field with appropriate choices of the scalar potential and couplings. The infrared AdS 4 fixed point describes a new ground state for strongly coupled quantum systems realizing such scalings, thus avoiding the well-known extensive zero temperature entropy associated with \( Ad{S}_2\times {\mathrm{\mathbb{R}}}^2 \). We also examine the zero temperature behavior of the optical conductivity in these backgrounds and identify two scaling regimes before the UV CFT scaling is reached. The scaling of the conductivity is controlled by the emergent IR conformal symmetry at very low frequencies, and by the intermediate scaling regime at higher frequencies.


Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C. Charmousis, B. Goutéraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    B. Gouteraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite Density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi Surfaces and Entanglement Entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, JHEP 07 (2012) 078 [arXiv:1203.4236] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    R.J. Anantua, S.A. Hartnoll, V.L. Martin and D.M. Ramirez, The Pauli exclusion principle at strong coupling: Holographic matter and momentum space, JHEP 03 (2013) 104 [arXiv:1210.1590] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Edalati and J.F. Pedraza, Aspects of Current Correlators in Holographic Theories with Hyperscaling Violation, Phys. Rev. D 88 (2013) 086004 [arXiv:1307.0808] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. Charmousis, B. Gouteraux and J. Soda, Einstein-Maxwell-Dilaton theories with a Liouville potential, Phys. Rev. D 80 (2009) 024028 [arXiv:0905.3337] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime, JHEP 03 (2010) 100 [arXiv:0912.3520] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    E. Perlmutter, Domain Wall Holography for Finite Temperature Scaling Solutions, JHEP 02 (2011) 013 [arXiv:1006.2124] [INSPIRE].ADSGoogle Scholar
  13. [13]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G.T. Horowitz and B. Way, Lifshitz Singularities, Phys. Rev. D 85 (2012) 046008 [arXiv:1111.1243] [INSPIRE].ADSGoogle Scholar
  15. [15]
    N. Bao, X. Dong, S. Harrison and E. Silverstein, The Benefits of Stress: Resolution of the Lifshitz Singularity, Phys. Rev. D 86 (2012) 106008 [arXiv:1207.0171] [INSPIRE].ADSGoogle Scholar
  16. [16]
    K. Copsey and R. Mann, Singularities in Hyperscaling Violating Spacetimes, JHEP 04 (2013) 079 [arXiv:1210.1231] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    B. Goutéraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP 01 (2012) 089 [arXiv:1110.2320] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Charmousis, B. Goutéraux and E. Kiritsis, Higher-derivative scalar-vector-tensor theories: black holes, Galileons, singularity cloaking and holography, JHEP 09 (2012) 011 [arXiv:1206.1499] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Goutéraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP 04 (2013) 053 [arXiv:1212.2625] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Y. Lei and S.F. Ross, Extending the non-singular hyperscaling violating spacetimes, Class. Quant. Grav. 31 (2014) 035007 [arXiv:1310.5878] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    J. Bhattacharya, S. Cremonini and A. Sinkovics, On the IR completion of geometries with hyperscaling violation, JHEP 02 (2013) 147 [arXiv:1208.1752] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    N. Kundu, P. Narayan, N. Sircar and S.P. Trivedi, Entangled Dilaton Dyons, JHEP JHEP03 (2013) 155 [arXiv:1208.2008] [INSPIRE].
  23. [23]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Semi-local quantum criticality in string/M-theory, JHEP 03 (2013) 103 [arXiv:1212.1462] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    S. Barisch-Dick, G.L. Cardoso, M. Haack and Á. Véliz-Osorio, Quantum corrections to extremal black brane solutions, JHEP 02 (2014) 105 [arXiv:1311.3136] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    D.K. O’Keeffe and A.W. Peet, Electric hyperscaling violating solutions in Einstein-Maxwell-dilaton gravity with R 2 corrections, Phys. Rev. D 90 (2014) 026004 [arXiv:1312.2261] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Ghodrati, Hyperscaling Violating Solution in Coupled Dilaton-Squared Curvature Gravity, Phys. Rev. D 90 (2014) 044055 [arXiv:1404.5399] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Harrison, S. Kachru and H. Wang, Resolving Lifshitz Horizons, JHEP 02 (2014) 085 [arXiv:1202.6635] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    G. Knodel and J.T. Liu, Higher derivative corrections to Lifshitz backgrounds, JHEP 10 (2013) 002 [arXiv:1305.3279] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].ADSGoogle Scholar
  30. [30]
    H. Ooguri and C.-S. Park, Holographic End-Point of Spatially Modulated Phase Transition, Phys. Rev. D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP 01 (2012) 061 [arXiv:1109.0471] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Magnetic and Electric AdS Solutions in String- and M-theory, Class. Quant. Grav. 29 (2012) 194006 [arXiv:1112.4195] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    S. Cremonini and A. Sinkovics, Spatially Modulated Instabilities of Geometries with Hyperscaling Violation, JHEP 01 (2014) 099 [arXiv:1212.4172] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    N. Iizuka and K. Maeda, Stripe Instabilities of Geometries with Hyperscaling Violation, Phys. Rev. D 87 (2013) 126006 [arXiv:1301.5677] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S. Cremonini, Spatially Modulated Instabilities for Scaling Solutions at Finite Charge Density, arXiv:1310.3279 [INSPIRE].
  37. [37]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [INSPIRE].ADSGoogle Scholar
  38. [38]
    G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    I. Amado, N. Lisker and A. Yarom, Universal chiral conductivities for low temperature holographic superfluids, JHEP 06 (2014) 084 [arXiv:1401.5795] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Competing p-wave orders, Class. Quant. Grav. 31 (2014) 055007 [arXiv:1310.5741] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    P. Dey and S. Roy, Interpolating solution from AdS 5 to hyperscaling violating Lifshitz space-time, Phys. Rev. D 91 (2015) 026005 [arXiv:1406.5992] [INSPIRE].ADSGoogle Scholar
  42. [42]
    B. Goutéraux, Universal scaling properties of extremal cohesive holographic phases, JHEP 01 (2014) 080 [arXiv:1308.2084] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G.T. Horowitz, J.E. Santos and D. Tong, Optical Conductivity with Holographic Lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    G.T. Horowitz, J.E. Santos and D. Tong, Further Evidence for Lattice-Induced Scaling, JHEP 11 (2012) 102 [arXiv:1209.1098] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Donos and J.P. Gauntlett, The thermoelectric properties of inhomogeneous holographic lattices, JHEP 01 (2015) 035 [arXiv:1409.6875] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D. van der Marel et al., Powerlaw optical conductivity with a constant phase angle in high Tc superconductors, Nature 425 (2003) 271 [cond-mat/0309172].ADSCrossRefGoogle Scholar
  48. [48]
    D.N. Basov, R.D. Averitt, D. van der Marel, M. Dressel and K. Haule, Electrodynamics of Correlated Electron Materials, Rev. Mod. Phys. 83 (2011) 471 [arXiv:1106.2309].ADSCrossRefGoogle Scholar
  49. [49]
    N. Iizuka et al., Extremal Horizons with Reduced Symmetry: Hyperscaling Violation, Stripes and a Classification for the Homogeneous Case, JHEP 03 (2013) 126 [arXiv:1212.1948] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. Gath, J. Hartong, R. Monteiro and N.A. Obers, Holographic Models for Theories with Hyperscaling Violation, JHEP 04 (2013) 159 [arXiv:1212.3263] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S.A. Hartnoll and L. Huijse, Fractionalization of holographic Fermi surfaces, Class. Quant. Grav. 29 (2012) 194001 [arXiv:1111.2606] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  52. [52]
    S.A. Hartnoll and D. Radicevic, Holographic order parameter for charge fractionalization, Phys. Rev. D 86 (2012) 066001 [arXiv:1205.5291] [INSPIRE].ADSGoogle Scholar
  53. [53]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  54. [54]
    S. Cremonini and X. Dong, Constraints on renormalization group flows from holographic entanglement entropy, Phys. Rev. D 89 (2014) 065041 [arXiv:1311.3307] [INSPIRE].ADSGoogle Scholar
  55. [55]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  57. [57]
    W. Chemissany and I. Papadimitriou, Generalized dilatation operator method for non-relativistic holography, Phys. Lett. B 737 (2014) 272 [arXiv:1405.3965] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    W. Chemissany and I. Papadimitriou, Lifshitz holography: The whole shebang, JHEP 01 (2015) 052 [arXiv:1408.0795] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Hartong, E. Kiritsis and N.A. Obers, Lifshitz Space-Times for Schroedinger Holography, arXiv:1409.1519 [INSPIRE].
  60. [60]
    A. Karch, Conductivities for Hyperscaling Violating Geometries, JHEP 06 (2014) 140 [arXiv:1405.2926] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett. 102 (2009) 061601 [arXiv:0807.1737] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  62. [62]
    C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [INSPIRE].ADSMathSciNetGoogle Scholar
  63. [63]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  64. [64]
    F. Nitti, G. Policastro and T. Vanel, Polarized solutions and Fermi surfaces in holographic Bose-Fermi systems, JHEP 12 (2014) 027 [arXiv:1407.0410] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP 06 (2014) 007 [arXiv:1401.5077] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP 04 (2014) 181 [arXiv:1401.5436] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys. 9 (2013) 649 [arXiv:1212.2998] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Donos, B. Goutéraux and E. Kiritsis, Holographic Metals and Insulators with Helical Symmetry, JHEP 09 (2014) 038 [arXiv:1406.6351] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Jyotirmoy Bhattacharya
    • 1
  • Sera Cremonini
    • 2
  • Blaise Goutéraux
    • 3
    • 4
    • 5
  1. 1.Kavli Institute for the Physics and Mathematics of the Universe (WPI)University of TokyoKashiwaJapan
  2. 2.George and Cynthia Mitchell Institute for Fundamental Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.
  3. 3.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  4. 4.Stanford Institute for Theoretical Physics, Department of PhysicsStanford UniversityStanfordU.S.A.
  5. 5.APC, Université Paris 7, CNRS, CEA, Observatoire de Paris, Sorbonne Paris CitéParis Cedex 13France

Personalised recommendations