Journal of High Energy Physics

, 2015:27 | Cite as

Self-intersecting fuzzy extra dimensions from squashed coadjoint orbits in \( \mathcal{N}=4 \) SYM and matrix models

Open Access
Regular Article - Theoretical Physics


We find new vacuum solutions of \( \mathcal{N}=4 \) super-Yang-Mills with totally antisymmetric cubic soft SUSY breaking terms, or equivalently solutions of the IKKT matrix model of type \( {\mathbb{R}}_{\theta}^4\times {\mathcal{K}}_N \) with flux terms. The solutions can be understood in terms of 4- and 6-dimensional fuzzy branes \( {\mathcal{K}}_N \) in extra dimensions, describing self-intersecting projections of compact flag manifolds of SU(3). The 6-dimensional solutions provide a 6-fold covering of the internal space near the origin, while the 4-dimensional branes have a triple self-intersection spanning all 6 internal directions. The solutions have lower energy than the trivial vacuum, and we prove that there are no negative modes. The massless modes are identified explicitly. In particular there are chiral fermionic zero modes, linking the coincident sheets with opposite flux at the origin. They have a \( {\mathbb{Z}}_3 \) family symmetry, originating from the Weyl group rotations.


Brane Dynamics in Gauge Theories Non-Commutative Geometry M(atrix) Theories Supersymmetric gauge theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Mandelstam, Light cone superspace and the ultraviolet finiteness of the N = 4 model, Nucl. Phys. B 213 (1983) 149 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    L. Brink, O. Lindgren and B.E.W. Nilsson, The ultraviolet finiteness of the N = 4 Yang-Mills theory, Phys. Lett. B 123 (1983) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    H. Aoki et al., Noncommutative Yang-Mills in IIB matrix model, Nucl. Phys. B 565 (2000) 176 [hep-th/9908141] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Dubois-Violette, J. Madore and R. Kerner, Gauge bosons in a noncommutative geometry, Phys. Lett. B 217 (1989) 485 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    U. Carow-Watamura and S. Watamura, Noncommutative geometry and gauge theory on fuzzy sphere, Commun. Math. Phys. 212 (2000) 395 [hep-th/9801195] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Iso, Y. Kimura, K. Tanaka and K. Wakatsuki, Noncommutative gauge theory on fuzzy sphere from matrix model, Nucl. Phys. B 604 (2001) 121 [hep-th/0101102] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    H. Steinacker, Quantized gauge theory on the fuzzy sphere as random matrix model, Nucl. Phys. B 679 (2004) 66 [hep-th/0307075] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    R. Delgadillo-Blando, D. O’Connor and B. Ydri, Geometry in transition: a model of emergent geometry, Phys. Rev. Lett. 100 (2008) 201601 [arXiv:0712.3011] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge theory, hep-th/0003136 [INSPIRE].
  12. [12]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N =4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    R.P. Andrews and N. Dorey, Deconstruction of the Maldacena-Núñez compactification, Nucl. Phys. B 751 (2006) 304 [hep-th/0601098] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    R.P. Andrews and N. Dorey, Spherical deconstruction, Phys. Lett. B 631 (2005) 74 [hep-th/0505107] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    P. Aschieri, T. Grammatikopoulos, H. Steinacker and G. Zoupanos, Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking, JHEP 09 (2006) 026 [hep-th/0606021] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    H. Steinacker and G. Zoupanos, Fermions on spontaneously generated spherical extra dimensions, JHEP 09 (2007) 017 [arXiv:0706.0398] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    A. Chatzistavrakidis, H. Steinacker and G. Zoupanos, On the fermion spectrum of spontaneously generated fuzzy extra dimensions with fluxes, Fortschr. Phys. 58 (2010) 537 [arXiv:0909.5559] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  18. [18]
    W. Behr, F. Meyer and H. Steinacker, Gauge theory on fuzzy S 2 × S 2 and regularization on noncommutative R 4, JHEP 07 (2005) 040 [hep-th/0503041] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    P. Castro-Villarreal, R. Delgadillo-Blando and B. Ydri, Quantum effective potential for U(1) fields on S L2 × S L2, JHEP 09 (2005) 066 [hep-th/0506044] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    T. Azuma, S. Bal, K. Nagao and J. Nishimura, Perturbative versus nonperturbative dynamics of the fuzzy S 2 × S 2, JHEP 09 (2005) 047 [hep-th/0506205] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    A. Chatzistavrakidis, H. Steinacker and G. Zoupanos, Intersecting branes and a standard model realization in matrix models, JHEP 09 (2011) 115 [arXiv:1107.0265] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    H. Aoki, J. Nishimura and A. Tsuchiya, Realizing three generations of the standard model fermions in the type IIB matrix model, JHEP 05 (2014) 131 [arXiv:1401.7848] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Nishimura and A. Tsuchiya, Realizing chiral fermions in the type IIB matrix model at finite N, JHEP 12 (2013) 002 [arXiv:1305.5547] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    H.C. Steinacker and J. Zahn, An extended standard model and its Higgs geometry from the matrix model, Prog. Theor. Exp. Phys. 2014 (2014) 083B03 [arXiv:1401.2020] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    S.-W. Kim, J. Nishimura and A. Tsuchiya, Late time behaviors of the expanding universe in the IIB matrix model, JHEP 10 (2012) 147 [arXiv:1208.0711] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    I. Jack and D.R.T. Jones, Nonstandard soft supersymmetry breaking, Phys. Lett. B 457 (1999) 101 [hep-ph/9903365] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A.Y. Alekseev, A. Recknagel and V. Schomerus, Brane dynamics in background fluxes and noncommutative geometry, JHEP 05 (2000) 010 [hep-th/0003187] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    H. Grosse and A. Strohmaier, Towards a nonperturbative covariant regularization in 4D quantum field theory, Lett. Math. Phys. 48 (1999) 163 [hep-th/9902138] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  29. [29]
    G. Alexanian, A.P. Balachandran, G. Immirzi and B. Ydri, Fuzzy CP 2, J. Geom. Phys. 42 (2002) 28 [hep-th/0103023] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    H. Grosse and H. Steinacker, Finite gauge theory on fuzzy CP 2, Nucl. Phys. B 707 (2005) 145 [hep-th/0407089] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    A.M. Perelomov, Generalized coherent states and their applications, Springer, Berlin Germany (1986) [INSPIRE].CrossRefMATHGoogle Scholar
  32. [32]
    J. Pawelczyk and H. Steinacker, A quantum algebraic description of D branes on group manifolds, Nucl. Phys. B 638 (2002) 433 [hep-th/0203110] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    J. Madore, The fuzzy sphere, Class. Quant. Grav. 9 (1992) 69 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  34. [34]
    J. Madore, Fuzzy physics, Annals Phys. 219 (1992) 187 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    J. Hoppe, Quantum theory of a massless relativistic surface and a two-dimensional bound state problem, Ph.D. Thesis, M.I.T. (1982).Google Scholar
  36. [36]
    F. Lizzi, P. Vitale and A. Zampini, The fuzzy disc, JHEP 08 (2003) 057 [hep-th/0306247] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    H. Steinacker, Emergent geometry and gravity from matrix models: an introduction, Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    P.G. Camara, L.E. Ibáñez and A.M. Uranga, Flux induced SUSY breaking soft terms, Nucl. Phys. B 689 (2004) 195 [hep-th/0311241] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Graña, T.W. Grimm, H. Jockers and J. Louis, Soft supersymmetry breaking in Calabi-Yau orientifolds with D-branes and fluxes, Nucl. Phys. B 690 (2004) 21 [hep-th/0312232] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    I. Jack and D.R.T. Jones, Ultraviolet finiteness in noncommutative supersymmetric theories, New J. Phys. 3 (2001) 19 [hep-th/0109195] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    N. Jacobson, Lie algebras, Dover (1979).Google Scholar
  42. [42]
    A. Van Proeyen, Tools for supersymmetry, hep-th/9910030 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations