Journal of High Energy Physics

, 2015:12 | Cite as

Hilbert series and moduli spaces of k U(N ) vortices

  • Amihay Hanany
  • Rak-Kyeong SeongEmail author
Open Access
Regular Article - Theoretical Physics


We study the moduli spaces of k U(N ) vortices which are realized by the Higgs branch of a U(k) supersymmetric gauge theory. The theory has 4 supercharges and lives on k D1-branes in a N D3- and NS5-brane background. We realize the vortex moduli space as a \( {\mathbb{C}}^{*} \) projection of the vortex master space. The Hilbert series is calculated in order to characterize the algebraic structure of the vortex master space and to identify the precise \( {\mathbb{C}}^{*} \) projection. As a result, we are able to fully classify the moduli spaces up to 3 vortices.


Supersymmetric gauge theory D-branes Differential and Algebraic Geometry Superstring Vacua 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A.A. Abrikosov, The magnetic properties of superconducting alloys, J. Phys. Chem. Solid 2 (1957) 199.ADSCrossRefGoogle Scholar
  2. [2]
    H.B. Nielsen and P. Olesen, Vortex Line Models for Dual Strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037 [hep-th/0306150] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    R. Auzzi, M. Shifman and A. Yung, Composite non-Abelian flux tubes in N = 2 SQCD, Phys. Rev. D 73 (2006) 105012 [Erratum ibid. D 76 (2007) 109901] [hep-th/0511150] [INSPIRE].
  5. [5]
    K. Hashimoto and D. Tong, Reconnection of non-Abelian cosmic strings, JCAP 09 (2005) 004 [hep-th/0506022] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    M. Eto et al., Non-Abelian Vortices of Higher Winding Numbers, Phys. Rev. D 74 (2006) 065021 [hep-th/0607070] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    M. Eto et al., Group Theory of Non-Abelian Vortices, JHEP 11 (2010) 042 [arXiv:1009.4794] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    A. Hanany and K. Hashimoto, Reconnection of colliding cosmic strings, JHEP 06 (2005) 021 [hep-th/0501031] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    M. Eto et al., On the moduli space of semilocal strings and lumps, Phys. Rev. D 76 (2007) 105002 [arXiv:0704.2218] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, NonAbelian superconductors: Vortices and confinement in N = 2 SQCD, Nucl. Phys. B 673 (2003) 187 [hep-th/0307287] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Moduli space of non-Abelian vortices, Phys. Rev. Lett. 96 (2006) 161601 [hep-th/0511088] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: The moduli matrix approach, J. Phys. A 39 (2006) R315 [hep-th/0602170] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    A. Hanany and A. Zaffaroni, The master space of supersymmetric gauge theories, Adv. High Energy Phys. 2010 (2010) 427891.CrossRefMathSciNetGoogle Scholar
  15. [15]
    D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, The Master Space of N = 1 Gauge Theories, JHEP 08 (2008) 012 [arXiv:0801.1585] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    A. Zaffaroni, The master space of N = 1 quiver gauge theories: Counting BPS operators, prepared for 8th Workshop on Continuous Advances in QCD (CAQCD-08), Minneapolis, Minnesota U.S.A., 15-18 May 2008.Google Scholar
  17. [17]
    D. Forcella, Master Space and Hilbert Series for N = 1 Field Theories, arXiv:0902.2109 [INSPIRE].
  18. [18]
    A. Butti, D. Forcella, A. Hanany, D. Vegh and A. Zaffaroni, Counting Chiral Operators in Quiver Gauge Theories, JHEP 11 (2007) 092 [arXiv:0705.2771] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert Series of the One Instanton Moduli Space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    A. Hanany, N. Mekareeya and S.S. Razamat, Hilbert Series for Moduli Spaces of Two Instantons, JHEP 01 (2013) 070 [arXiv:1205.4741] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    A. Dey, A. Hanany, N. Mekareeya, D. Rodríguez-Gómez, and R.-K. Seong, Hilbert Series for Moduli Spaces of Instantons on \( {\mathbb{C}}^2/{\mathbb{Z}}_n \), JHEP 01 (2014) 182 [arXiv:1309.0812] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Y. Manin, Construction of Instantons, Phys. Lett. A 65 (1978) 185 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    A. Hanany and C. Romelsberger, Counting BPS operators in the chiral ring of N = 2 supersymmetric gauge theories or N = 2 braine surgery, Adv. Theor. Math. Phys. 11 (2007) 1091 [hep-th/0611346] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: The Plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    A. Hanany, N. Mekareeya and G. Torri, The Hilbert Series of Adjoint SQCD, Nucl. Phys. B 825 (2010) 52 [arXiv:0812.2315] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    A. Hanany and R.-K. Seong, Brane Tilings and Reflexive Polygons, Fortsch. Phys. 60 (2012) 695 [arXiv:1201.2614] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    A. Hanany and R.-K. Seong, Brane Tilings and Specular Duality, JHEP 08 (2012) 107 [arXiv:1206.2386] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    S. Cremonesi, A. Hanany and R.-K. Seong, Double Handled Brane Tilings, JHEP 10 (2013) 001 [arXiv:1305.3607] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    E. Getzler and M.M. Kapranov, Modular operads, dg-ga/9408003.
  31. [31]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    C.-j. Kim, K.-M. Lee and S.-H. Yi, Tales of D0 on D6-branes: Matrix mechanics of identical particles, Phys. Lett. B 543 (2002) 107 [hep-th/0204109] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    J.-P. Magnot, Ambrose-Singer theorem on diffeological bundles and complete integrability of the KP equation, Int. J. Geom. Meth. Mod. Phys. 10 (2013) 1350043 [INSPIRE].CrossRefMathSciNetGoogle Scholar
  34. [34]
    A. Hanany and R. Kalveks, in preparation.Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Theoretical Physics GroupThe Blackett Laboratory, Imperial College LondonLondonU.K.
  2. 2.School of PhysicsKorea Institute for Advanced StudySeoulSouth Korea

Personalised recommendations