Journal of High Energy Physics

, 2014:121 | Cite as

One-loop W L W L and Z L Z L scattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar

  • Rafael L. Delgado
  • Antonio Dobado
  • Felipe J. Llanes-EstradaEmail author
Open Access


By including the recently discovered Higgs-like scalar φ in the Electroweak Chiral Lagrangian, and using the Equivalence Theorem, we carry out the complete one-loop computation of the elastic scattering amplitude for the longitudinal components of the gauge bosons V = W, Z at high energy. We also compute φφφφ and the inelastic process VVφφ, and identify the counterterms needed to cancel the divergences, namely the well known a 4 and a 5 chiral parameters plus three additional ones only superficially treated in the literature because of their dimension 8. Finally we compute all the partial waves and discuss the limitations of the one-loop computation due to only approximate unitarity.


Beyond Standard Model Chiral Lagrangians Spontaneous Symmetry Breaking Scattering Amplitudes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].ADSGoogle Scholar
  2. [2]
    C. Vayonakis, Born Helicity Amplitudes and Cross-Sections in Nonabelian Gauge Theories, Lett. Nuovo Cim. 17 (1976) 383 [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    B.W. Lee, C. Quigg and H. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  4. [4]
    M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting Ws and Zs, Nucl. Phys. 261 (1985) 379.ADSCrossRefGoogle Scholar
  5. [5]
    M.S. Chanowitz, M. Golden and H. Georgi, Low-Energy Theorems for Strongly Interacting Ws and Zs, Phys. Rev. D 36 (1987) 1490 [INSPIRE].ADSGoogle Scholar
  6. [6]
    A. Dobado and J. Pelaez, On The Equivalence theorem in the chiral perturbation theory description of the symmetry breaking sector of the standard model, Nucl. Phys. B 425 (1994) 110 [Erratum ibid. B 434 (1995) 475] [hep-ph/9401202] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Dobado and J.R. Pelaez, The Equivalence theorem for chiral lagrangians, Phys. Lett. B 329 (1994) 469 [Addendum ibid. B 335 (1994) 554] [hep-ph/9404239] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  9. [9]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  10. [10]
    ATLAS collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168 (2012).
  11. [11]
    CMS collaboration, 1460419, CMS-HIG-12-015 (1460419).
  12. [12]
    CMS collaboration, Search for Resonances in the Dijet Mass Spectrum from 7 TeV pp Collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].ADSGoogle Scholar
  13. [13]
    ATLAS collaboration, Search for heavy vector-like quarks coupling to light quarks in proton-proton collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Lett. B 712 (2012) 22 [arXiv:1112.5755] [INSPIRE].ADSGoogle Scholar
  14. [14]
    ATLAS collaboration, Search for long-lived, multi-charged particles in pp collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, Phys. Lett. B 722 (2013) 305 [arXiv:1301.5272] [INSPIRE].ADSGoogle Scholar
  15. [15]
    D. Espriu, F. Mescia and B. Yencho, Radiative corrections to WL WL scattering in composite Higgs models, Phys. Rev. D 88 (2013) 055002 [arXiv:1307.2400] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    I. Brivio, et al., Disentangling a dynamical Higgs, arXiv:1311.1823 [INSPIRE].
  18. [18]
    R. Alonso, M. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light DynamicalHiggs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Pich, I. Rosell and J.J. Sanz-Cillero, Strongly Coupled Models with a Higgs-like Boson, EPJ Web Conf. 60 (2013) 19009 [arXiv:1307.1958] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane et al., Effective Field Theory: A Modern Approach to Anomalous Couplings, Annals Phys. 335 (2013) 21 [arXiv:1205.4231] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, arXiv:1307.5017 [INSPIRE].
  23. [23]
    G. Buchalla and O. Catà, Effective Theory of a Dynamically Broken Electroweak Standard Model at NLO, JHEP 07 (2012) 101 [arXiv:1203.6510] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. Appelquist and C.W. Bernard, Strongly Interacting Higgs Bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE].ADSGoogle Scholar
  25. [25]
    A.C. Longhitano, Heavy Higgs Bosons in the Weinberg-Salam Model, Phys. Rev. D 22 (1980) 1166 [INSPIRE].ADSGoogle Scholar
  26. [26]
    A.C. Longhitano, Low-Energy Impact of a Heavy Higgs Boson Sector, Nucl. Phys. B 188 (1981) 118 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Dobado, D. Espriu and M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry breaking sector of the SM at LEP, Phys. Lett. B 255 (1991) 405 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    B. Holdom and J. Terning, Large corrections to electroweak parameters in technicolor theories, Phys. Lett. B 247 (1990) 88 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Dobado, D. Espriu and M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry breaking sector of the SM at LEP, Phys. Lett. B 255 (1991) 405 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Golden and L. Randall, Radiative Corrections to Electroweak Parameters in Technicolor Theories, Nucl. Phys. B 361 (1991) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, LightHiggs, yet strong interactions, J. Phys. G 41 (2014) 025002 [arXiv:1308.1629] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong Double Higgs Production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, arXiv:1005.4269 [INSPIRE].
  37. [37]
    R. Grober and M. Muhlleitner, Composite Higgs Boson Pair Production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G. Bélanger, B. Dumont, U. Ellwanger, J. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].ADSGoogle Scholar
  39. [39]
    T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  40. [40]
    T. Corbett, O. Éboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Robust determination of the scalar boson couplings, arXiv:1306.0006 [INSPIRE].
  41. [41]
    J. Ellis and T. You, Updated Global Analysis of Higgs Couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, arXiv:1303.3570 [INSPIRE].
  43. [43]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    E. Halyo, Technidilaton or Higgs?, Mod. Phys. Lett. A 8 (1993) 275 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  48. [48]
    D. Barducci, A. Belyaev, M. Brown, S. De Curtis, S. Moretti et al., The 4-Dimensional Composite Higgs Model (4DCHM) and the 125 GeV Higgs-like signals at the LHC, JHEP 09 (2013) 047 [arXiv:1302.2371] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    D.B. Kaplan and H. Georgi, SU(2) x U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Dimopoulos and J. Preskill, Massless Composites With Massive Constituents, Nucl. Phys. B 199 (1982) 206 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Banks, Constraints on SU(2) × U (1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984) 125 [INSPIRE].ADSGoogle Scholar
  52. [52]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    H. Georgi, D.B. Kaplan and P. Galison, Calculation of the Composite Higgs Mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    D. Espriu and B. Yencho, Longitudinal WW scattering in light of theHiggs bosondiscovery, Phys. Rev. D 87 (2013) 055017 [arXiv:1212.4158] [INSPIRE].ADSGoogle Scholar
  58. [58]
    S.L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22 (1961) 579.CrossRefGoogle Scholar
  59. [59]
    S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Salam, Elementary Particle Physics, in Proc. 8th Nobel Symp., N. Svartholm ed., pg. 367, Stockholm, Almqvist and Wiksells, 1968.Google Scholar
  61. [61]
    A. Dobado and M.J. Herrero, Phenomenological Lagrangian Approach to the Symmetry Breaking Sector of the Standard Model, Phys. Lett. B 228 (1989) 495 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Dobado and M.J. Herrero, Testing the Hypothesis of Strongly Interacting Longitudinal Weak Bosons in Electron - Positron Collisions at TeV Energies, Phys. Lett. B 233 (1989) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J.F. Donoghue and C. Ramirez, Symmetry Breaking Schemes and W W Scattering, Phys. Lett. B 234 (1990) 361 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure the Higgs boson mass and self-coupling?, Phys. Rev. D 88 (2013) 055024 [arXiv:1305.6397] [INSPIRE].ADSGoogle Scholar
  65. [65]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, arXiv:1310.1921 [INSPIRE].
  66. [66]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  67. [67]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J. Kuipers, T. Ueda, J. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Rafael L. Delgado
    • 1
  • Antonio Dobado
    • 1
  • Felipe J. Llanes-Estrada
    • 1
    Email author
  1. 1.Departamento de Física Teórica IUniversidad Complutense de MadridMadridSpain

Personalised recommendations