Advertisement

Journal of High Energy Physics

, 2014:98 | Cite as

Discrete R-symmetries and anomaly universality in heterotic orbifolds

  • Nana G. Cabo Bizet
  • Tatsuo Kobayashi
  • Damián K. Mayorga Peña
  • Susha L. Parameswaran
  • Matthias Schmitz
  • Ivonne Zavala
Open Access
Article

Abstract

We study discrete R-symmetries, which appear in the 4D low energy effective field theory derived from heterotic orbifold models. We derive the R-symmetries directly from the geometrical symmetries of the orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. The R-charges obtained in this manner differ from those derived in earlier explicit computations. We study the anomalies associated with these R-symmetries, and comment on the results.

Keywords

Superstrings and Heterotic Strings Discrete and Finite Symmetries Conformal Field Models in String Theory Anomalies in Field and String Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Banks, Effective lagrangian description of discrete gauge symmetries, Nucl. Phys. B 323 (1989) 90 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. Preskill and L.M. Krauss, Local discrete symmetry and quantum mechanical hair, Nucl. Phys. B 341 (1990) 50 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    M.G. Alford, S.R. Coleman and J. March-Russell, Disentangling non-abelian discrete quantum hair, Nucl. Phys. B 351 (1991) 735 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds, Nucl. Phys. B 261 (1985) 678 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds. 2, Nucl. Phys. B 274 (1986) 285 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    T. Kobayashi, S. Raby and R.-J. Zhang, Searching for realistic 4d string models with a Pati-Salam symmetry: orbifold grand unified theories from heterotic string compactification on a Z(6) orbifold, Nucl. Phys. B 704 (2005) 3 [hep-ph/0409098] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    T. Kobayashi, S. Raby and R.-J. Zhang, Constructing 5D orbifold grand unified theories from heterotic strings, Phys. Lett. B 593 (2004) 262 [hep-ph/0403065] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602 [hep-ph/0511035] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string (II), Nucl. Phys. B 785 (2007) 149 [hep-th/0606187] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    O. Lebedev et al., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    O. Lebedev, H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K. Vaudrevange, Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a Z(6) orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    S. Groot Nibbelink and O. Loukas, MSSM-like models on Z(8) toroidal orbifolds, JHEP 12 (2013) 044 [arXiv:1308.5145] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  13. [13]
    H. Kawabe, T. Kobayashi and N. Ohtsubo, Study of minimal string unification in Z(8) orbifold models, Phys. Lett. B 322 (1994) 331 [hep-th/9309069] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    J.E. Kim and B. Kyae, Flipped SU(5) from Z(12 − I) orbifold with Wilson line, Nucl. Phys. B 770 (2007) 47 [hep-th/0608086] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    J.E. Kim, J.-H. Kim and B. Kyae, Superstring standard model from Z(12 − I) orbifold compactification with and without exotics and effective R-parity, JHEP 06 (2007) 034 [hep-ph/0702278] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    J.E. Kim, Abelian discrete symmetries \( {{\mathbb{Z}}_N} \) and \( {{\mathbb{Z}}_{nR }} \) from string orbifolds, Phys. Lett. B 726 (2013) 450 [arXiv:1308.0344] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Blaszczyk et al., A Z 2 × Z 2 standard model, Phys. Lett. B 683 (2010) 340 [arXiv:0911.4905] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    S. Förste, T. Kobayashi, H. Ohki and K.-j. Takahashi, Non-factorisable Z 2 × Z 2 heterotic orbifold models and Yukawa couplings, JHEP 03 (2007) 011 [hep-th/0612044] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    A. Font, L.E. Ibáñez, H.P. Nilles and F. Quevedo, On the concept of naturalness in string theories, Phys. Lett. B 213 (1988) 274 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    N.G. Cabo Bizet et al., R-charge conservation and more in factorizable and non-factorizable orbifolds, JHEP 05 (2013) 076 [arXiv:1301.2322] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  21. [21]
    S. Hamidi and C. Vafa, Interactions on orbifolds, Nucl. Phys. B 279 (1987) 465 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The conformal field theory of orbifolds, Nucl. Phys. B 282 (1987) 13 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    L.E. Ibáñez, More about discrete gauge anomalies, Nucl. Phys. B 398 (1993) 301 [hep-ph/9210211] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    L.E. Ibáñez and G.G. Ross, Discrete gauge symmetry anomalies, Phys. Lett. B 260 (1991) 291 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Banks and M. Dine, Note on discrete gauge anomalies, Phys. Rev. D 45 (1992) 1424 [hep-th/9109045] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    T. Kobayashi and H. Nakano, ’Anomalous’ U(1) symmetry in orbifold string models, Nucl. Phys. B 496 (1997) 103 [hep-th/9612066] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    T. Araki, K.-S. Choi, T. Kobayashi, J. Kubo and H. Ohki, Discrete R-symmetry anomalies in heterotic orbifold models, Phys. Rev. D 76 (2007) 066006 [arXiv:0705.3075] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    T. Araki et al., (Non-)Abelian discrete anomalies, Nucl. Phys. B 805 (2008) 124 [arXiv:0805.0207] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K. Vaudrevange, A note on discrete R symmetries in \( {{\mathbb{Z}}_6}-II \) orbifolds with Wilson lines, Phys. Lett. B 726 (2013) 876 [arXiv:1308.3435] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    L.E. Ibáñez, H.P. Nilles and F. Quevedo, Orbifolds and Wilson lines, Phys. Lett. B 187 (1987) 25 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T. Kobayashi and N. Ohtsubo, Allowed Yukawa couplings of Z N × Z M orbifold models, Phys. Lett. B 262 (1991) 425 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    T. Kobayashi and N. Ohtsubo, Geometrical aspects of Z N orbifold phenomenology, Int. J. Mod. Phys. A 9 (1994) 87 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    F. Ploger, S. Ramos-Sanchez, M. Ratz and P.K. Vaudrevange, Mirage torsion, JHEP 04 (2007) 063 [hep-th/0702176] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    P. Goddard and D.I. Olive, Kac-Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A 1 (1986) 303 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    T. Kobayashi and N. Ohtsubo, Yukawa coupling condition of Z N orbifold models, Phys. Lett. B 245 (1990) 441 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    J. Casas, F. Gómez and C. Muñoz, Complete structure of Z(n) Yukawa couplings, Int. J. Mod. Phys. A 8 (1993) 455 [hep-th/9110060] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    K.S. Choi and J.E. Kim, Quarks and leptons from orbifolded superstring, Lect. Notes Phys. volume 696, Springer, Berlin Germany (2006).Google Scholar
  40. [40]
    T. Kobayashi, S.L. Parameswaran, S. Ramos-Sanchez and I. Zavala, Revisiting coupling selection rules in heterotic orbifold models, JHEP 05 (2012) 008 [Erratum ibid. 1212 (2012) 049] [arXiv:1107.2137] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Lüdeling, F. Ruehle and C. Wieck, Non-universal anomalies in heterotic string constructions, Phys. Rev. D 85 (2012) 106010 [arXiv:1203.5789] [INSPIRE].ADSGoogle Scholar
  42. [42]
    L.E. Ibáñez and D. Lüst, Duality anomaly cancellation, minimal string unification and the effective low-energy Lagrangian of 4D strings, Nucl. Phys. B 382 (1992) 305 [hep-th/9202046] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Derendinger, S. Ferrara, C. Kounnas and F. Zwirner, On loop corrections to string effective field theories: Field dependent gauge couplings and σ-model anomalies, Nucl. Phys. B 372 (1992) 145 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    K. Fujikawa, Path integral measure for gauge invariant fermion theories, Phys. Rev. Lett. 42 (1979) 1195 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    K. Fujikawa, Path integral for gauge theories with fermions, Phys. Rev. D 21 (1980) 2848 [Erratum ibid. D 22 (1980) 1499] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    L. Álvarez-Gaumé and E. Witten, Gravitational anomalies, Nucl. Phys. B 234 (1984) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    L. Álvarez-Gaumé and P.H. Ginsparg, The structure of gauge and gravitational anomalies, Annals Phys. 161 (1985) 423 [Erratum ibid. 171 (1986) 233] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    H.P. Nilles, S. Ramos-Sanchez, P.K. Vaudrevange and A. Wingerter, The orbifolder: a tool to study the low energy effective theory of heterotic orbifolds, Comput. Phys. Commun. 183 (2012) 1363 [arXiv:1110.5229] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    Y. Katsuki, Y. Kawamura, T. Kobayashi, N. Ohtsubo and K. Tanioka, Gauge groups of Z(n) orbifold models, Prog. Theor. Phys. 82 (1989) 171 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    Y. Katsuki et al., Z(4) and Z(6) orbifold models, Phys. Lett. B 218 (1989) 169 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    Y. Katsuki et al., Z(n) orbifold models, Nucl. Phys. B 341 (1990) 611 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  52. [52]
    T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135 [hep-ph/0611020] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    L.E. Ibáñez, R. Rabadán and A.M. Uranga, σ-model anomalies in compact D = 4, N = 1 type IIB orientifolds and Fayet-Iliopoulos terms, Nucl. Phys. B 576 (2000) 285 [hep-th/9905098] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S.J.H. Konopka, Non Abelian orbifold compactifications of the heterotic string, JHEP 07 (2013) 023 [arXiv:1210.5040] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    M. Fischer, M. Ratz, J. Torrado and P.K. Vaudrevange, Classification of symmetric toroidal orbifolds, JHEP 01 (2013) 084 [arXiv:1209.3906] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    M. Fischer, S. Ramos-Sanchez and P.K.S. Vaudrevange, Heterotic non-abelian orbifolds, JHEP 07 (2013) 080 [arXiv:1304.7742] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  57. [57]
    H.M. Lee et al., A unique \( Z_4^R \) symmetry for the MSSM, Phys. Lett. B 694 (2011) 491 [arXiv:1009.0905] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    H.M. Lee et al., Discrete R symmetries for the MSSM and its singlet extensions, Nucl. Phys. B 850 (2011) 1 [arXiv:1102.3595] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Nana G. Cabo Bizet
    • 1
  • Tatsuo Kobayashi
    • 2
  • Damián K. Mayorga Peña
    • 3
  • Susha L. Parameswaran
    • 4
  • Matthias Schmitz
    • 3
  • Ivonne Zavala
    • 5
  1. 1.Centro de Aplicaciones Tecnológicas y Desarrollo NuclearLa HabanaCuba
  2. 2.Department of PhysicsKyoto UniversityKyotoJapan
  3. 3.Bethe Center for Theoretical Physics and Physikalisches Institut der Universität BonnBonnGermany
  4. 4.Department of Mathematics and PhysicsLeibniz Universität HannoverHannoverGermany
  5. 5.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations