Journal of High Energy Physics

, 2014:65 | Cite as

Doubled α-geometry

Open Access
Article

Abstract

We develop doubled-coordinate field theory to determine the α corrections to the massless sector of oriented bosonic closed string theory. Our key tool is a string current algebra of free left-handed bosons that makes O(D,D) T-duality manifest. While T-dualities are unchanged, diffeomorphisms and b-field gauge transformations receive corrections, with a gauge algebra given by an α-deformation of the duality-covariantized Courant bracket. The action is cubic in a double metric field, an unconstrained extension of the generalized metric that encodes the gravitational fields. Our approach provides a consistent truncation of string theory to massless fields with corrections that close at finite order in α.

Keywords

Gauge Symmetry Bosonic Strings Conformal Field Models in String Theory String Duality 

References

  1. [1]
    W. Siegel, Manifest Lorentz invariance sometimes requires nonlinearity, Nucl. Phys. B 238 (1984) 307 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    E. Fradkin and A.A. Tseytlin, Effective field theory from quantized strings, Phys. Lett. B 158 (1985) 316 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    E. Fradkin and A.A. Tseytlin, Quantum string theory effective action, Nucl. Phys. B 261 (1985) 1 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    T. Banks, D. Nemeschansky and A. Sen, Dilaton coupling and BRST quantization of bosonic strings, Nucl. Phys. B 277 (1986) 67 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    R. Floreanini and R. Jackiw, Selfdual fields as charge density solitons, Phys. Rev. Lett. 59 (1987) 1873 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    C.M. Hull, Covariant quantization of chiral bosons and anomaly cancellation, Phys. Lett. B 206 (1988) 234 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    M. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSGoogle Scholar
  11. [11]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSGoogle Scholar
  12. [12]
    W. Siegel, Manifest duality in low-energy superstrings, hep-th/9308133 [INSPIRE].
  13. [13]
    W. Siegel, Untwisting the twistor superstring, hep-th/0404255 [INSPIRE].
  14. [14]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    B. Zwiebach, Closed string field theory: quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    T. Kugo and B. Zwiebach, Target space duality as a symmetry of string field theory, Prog. Theor. Phys. 87 (1992) 801 [hep-th/9201040] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    O. Hohm and B. Zwiebach, On the Riemann tensor in double field theory, JHEP 05 (2012) 126 [arXiv:1112.5296] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    O. Hohm and B. Zwiebach, Large gauge transformations in double field theory, JHEP 02 (2013) 075 [arXiv:1207.4198] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    O. Hohm and B. Zwiebach, Towards an invariant geometry of double field theory, J. Math. Phys. 54 (2013) 032303 [arXiv:1212.1736] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: Application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  26. [26]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  27. [27]
    M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].
  28. [28]
    M. Gualtieri, Branes on Poisson varieties, arXiv:0710.2719 [INSPIRE].
  29. [29]
    O. Hohm and S.K. Kwak, Massive type II in double field theory, JHEP 11 (2011) 086 [arXiv:1108.4937] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    O. Hohm and S.K. Kwak, Double field theory formulation of heterotic strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    O. Hohm and S.K. Kwak, N = 1 supersymmetric double field theory, JHEP 03 (2012) 080 [arXiv:1111.7293] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    I. Jeon, K. Lee and J.-H. Park, Supersymmetric double field theory: stringy reformulation of supergravity, Phys. Rev. D 85 (2012) 081501 [Erratum ibid. D 86 (2012) 089903] [arXiv:1112.0069] [INSPIRE].ADSGoogle Scholar
  36. [36]
    W. Siegel, New superspaces/algebras for superparticles/strings, arXiv:1106.1585 [INSPIRE].
  37. [37]
    G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of double field theory, JHEP 11 (2011) 052 [Erratum ibid. 1111 (2011) 109] [arXiv:1109.0290] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. Geissbuhler, Double field theory and N = 4 gauged supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    M. Graña and D. Marques, Gauged double field theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D. Geissbuhler, D. Marques, C. Núñez and V. Penas, Exploring double field theory, JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-geometric fluxes in supergravity and double field theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  43. [43]
    C. Hillmann, Generalized E 7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × \( \mathbb{R} \) + generalised geometry, connections and M-theory, arXiv:1112.3989 [INSPIRE].
  46. [46]
    G. Aldazabal, D. Marques and C. Núñez, Double field theory: a pedagogical review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Sen, O(d) × O(d) symmetry of the space of cosmological solutions in string theory, scale factor duality and two-dimensional black holes, Phys. Lett. B 271 (1991) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    K.A. Meissner, Symmetries of higher order string gravity actions, Phys. Lett. B 392 (1997) 298 [hep-th/9610131] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    N. Kaloper and K.A. Meissner, Duality beyond the first loop, Phys. Rev. D 56 (1997) 7940 [hep-th/9705193] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Arnold Sommerfeld Center for Theoretical PhysicsMunichGermany
  2. 2.C.N. Yang Institute for Theoretical PhysicsState University of New YorkStony BrookU.S.A.
  3. 3.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations