Journal of High Energy Physics

, 2014:60 | Cite as

Doubly charged scalar decays in a type II seesaw scenario with two Higgs triplets

  • Avinanda Chaudhuri
  • Walter GrimusEmail author
  • Biswarup Mukhopadhyaya
Open Access


The type II seesaw mechanism for neutrino mass generation usually makes use of one complex scalar triplet. The collider signature of the doubly-charged scalar, the most striking feature of this scenario, consists mostly in decays into same-sign dileptons or same-sign W boson pairs. However, certain scenarios of neutrino mass generation, such as those imposing texture zeros by a symmetry mechanism, require at least two triplets in order to be consistent with the type II seesaw mechanism. We develop a model with two such complex triplets and show that, in such a case, mixing between the triplets can cause the heavier doubly-charged scalar mass eigenstate to decay into a singly-charged scalar and a W boson of the same sign. Considering a large number of benchmark points with different orders of magnitude of the ΔL = 2 Yukawa couplings, chosen in agreement with the observed neutrino mass and mixing pattern, we demonstrate that \( H_1^{++}\to H_2^{+}{W^{+}} \) can have more than 99 % branching fraction in the cases where the vacuum expectation values of the triplets are small. It is also shown that the above decay allows one to differentiate a two-triplet case at the LHC, through the ratios of events in various multi-lepton channels.


Hadronic Colliders 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    W. Konetschny and W. Kummer, Nonconservation of Total Lepton Number with Scalar Bosons, Phys. Lett. B 70 (1977) 433 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G. Gelmini and M. Roncadelli, Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number, Phys. Lett. B 99 (1981) 411 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  8. [8]
    R.N. Mohapatra and P. Pal, Massive neutrinos in physics and astrophysics, World Scientific, Singapore, (1991), pg. 127.CrossRefGoogle Scholar
  9. [9]
    E. Ma and U. Sarkar, Neutrino masses and leptogenesis with heavy Higgs triplets, Phys. Rev. Lett. 80 (1998) 5716 [hep-ph/9802445] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Schechter and J. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  11. [11]
    T. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  12. [12]
    S.M. Bilenky, J. Hosek and S. Petcov, On Oscillations of Neutrinos with Dirac and Majorana Masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    I.Y. Kobzarev, B. Martemyanov, L. Okun and M. Shchepkin, The phenomenology of neutrino oscillations, Sov. J. Nucl. Phys. 32 (1980) 823 [INSPIRE].Google Scholar
  14. [14]
    J. Gunion, R. Vega and J. Wudka, Higgs triplets in the standard model, Phys. Rev. D 42 (1990) 1673 [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Gunion, R. Vega and J. Wudka, Naturalness problems for ρ = 1 and other large one loop effects for a standard model Higgs sector containing triplet fields, Phys. Rev. D 43 (1991) 2322 [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Chakrabarti, D. Choudhury, R.M. Godbole and B. Mukhopadhyaya, Observing doubly charged Higgs bosons in photon-photon collisions, Phys. Lett. B 434 (1998) 347 [hep-ph/9804297] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E.J. Chun, K.Y. Lee and S.C. Park, Testing Higgs triplet model and neutrino mass patterns, Phys. Lett. B 566 (2003) 142 [hep-ph/0304069] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Han, H.E. Logan, B. Mukhopadhyaya and R. Srikanth, Neutrino masses and lepton-number violation in the littlest Higgs scenario, Phys. Rev. D 72 (2005) 053007 [hep-ph/0505260] [INSPIRE].ADSGoogle Scholar
  19. [19]
    T. Han, B. Mukhopadhyaya, Z. Si and K. Wang, Pair production of doubly-charged scalars: Neutrino mass constraints and signals at the LHC, Phys. Rev. D 76 (2007) 075013 [arXiv:0706.0441] [INSPIRE].ADSGoogle Scholar
  20. [20]
    P. Dey, A. Kundu and B. Mukhopadhyaya, Some consequences of a Higgs triplet, J. Phys. G 36 (2009) 025002 [arXiv:0802.2510] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Aoki, S. Kanemura, T. Shindou and K. Yagyu, An R-parity conserving radiative neutrino mass model without right-handed neutrinos, JHEP 07 (2010) 084 [Erratum ibid. 1011 (2010) 049] [arXiv:1005.5159] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Akeroyd and H. Sugiyama, Production of doubly charged scalars from the decay of singly charged scalars in the Higgs Triplet Model, Phys. Rev. D 84 (2011) 035010 [arXiv:1105.2209] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Aoki, S. Kanemura and K. Yagyu, Testing the Higgs triplet model with the mass difference at the LHC, Phys. Rev. D 85 (2012) 055007 [arXiv:1110.4625] [INSPIRE].ADSGoogle Scholar
  24. [24]
    P.H. Frampton, S.L. Glashow and D. Marfatia, Zeroes of the neutrino mass matrix, Phys. Lett. B 536 (2002) 79 [hep-ph/0201008] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Z.-z. Xing, Texture zeros and Majorana phases of the neutrino mass matrix, Phys. Lett. B 530 (2002) 159 [hep-ph/0201151] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Z.-z. Xing, A full determination of the neutrino mass spectrum from two zero textures of the neutrino mass matrix, Phys. Lett. B 539 (2002) 85 [hep-ph/0205032] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Honda, S. Kaneko and M. Tanimoto, Prediction and its stability in neutrino mass matrix with two zeros, JHEP 09 (2003) 028 [hep-ph/0303227] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    W.-l. Guo and Z.-z. Xing, Calculable CP-violating phases in the minimal seesaw model of leptogenesis and neutrino mixing, Phys. Lett. B 583 (2004) 163 [hep-ph/0310326] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Honda, S. Kaneko and M. Tanimoto, Seesaw enhancement of bilarge mixing in two zero textures, Phys. Lett. B 593 (2004) 165 [hep-ph/0401059] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Goswami and A. Watanabe, Minimal Seesaw Textures with Two Heavy Neutrinos, Phys. Rev. D 79 (2009) 033004 [arXiv:0807.3438] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Choubey, W. Rodejohann and P. Roy, Phenomenological consequences of four zero neutrino Yukawa textures, Nucl. Phys. B 808 (2009) 272 [Erratum ibid. 818 (2009) 136] [arXiv:0807.4289] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Goswami, S. Khan and W. Rodejohann, Minimal Textures in Seesaw Mass Matrices and their low and high Energy Phenomenology, Phys. Lett. B 680 (2009) 255 [arXiv:0905.2739] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Ghosh, S. Goswami and S. Gupta, Two Zero Mass Matrices and Sterile Neutrinos, JHEP 04 (2013) 103 [arXiv:1211.0118] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    W. Grimus, A.S. Joshipura, L. Lavoura and M. Tanimoto, Symmetry realization of texture zeros, Eur. Phys. J. C 36 (2004) 227 [hep-ph/0405016] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    W. Grimus and L. Lavoura, On a model with two zeros in the neutrino mass matrix, J. Phys. G 31 (2005) 693 [hep-ph/0412283] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Huitu, J. Maalampi, A. Pietila and M. Raidal, Doubly charged Higgs at LHC, Nucl. Phys. B 487 (1997) 27 [hep-ph/9606311] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Gunion, C. Loomis and K. Pitts, Searching for doubly charged Higgs bosons at future colliders, eConf C 960625 (1996) LTH096 [hep-ph/9610237] [INSPIRE].
  38. [38]
    J. Montero, C. de S. Pires and V. Pleitez, Neutrino masses through a type-II seesaw mechanism at TeV scale, Phys. Lett. B 502 (2001) 167 [hep-ph/0011296] [INSPIRE].
  39. [39]
    E. Ma, M. Raidal and U. Sarkar, Phenomenology of the neutrino mass giving Higgs triplet and the low-energy seesaw violation of lepton number, Nucl. Phys. B 615 (2001) 313 [hep-ph/0012101] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Muhlleitner and M. Spira, A note on doubly charged Higgs pair production at hadron colliders, Phys. Rev. D 68 (2003) 117701 [hep-ph/0305288] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Akeroyd and M. Aoki, Single and pair production of doubly charged Higgs bosons at hadron colliders, Phys. Rev. D 72 (2005) 035011 [hep-ph/0506176] [INSPIRE].ADSGoogle Scholar
  42. [42]
    B. Bajc, M. Nemevšek and G. Senjanović, Probing seesaw at LHC, Phys. Rev. D 76 (2007) 055011 [hep-ph/0703080] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A. Hektor, M. Kadastik, M. Muntel, M. Raidal and L. Rebane, Testing neutrino masses in little Higgs models via discovery of doubly charged Higgs at LHC, Nucl. Phys. B 787 (2007) 198 [arXiv:0705.1495] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Garayoa and T. Schwetz, Neutrino mass hierarchy and Majorana CP phases within the Higgs triplet model at the LHC, JHEP 03 (2008) 009 [arXiv:0712.1453] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    W. Grimus, R. Pfeiffer and T. Schwetz, A four neutrino model with a Higgs triplet, Eur. Phys. J. C 13 (2000) 125 [hep-ph/9905320] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A.M. Rotunno, Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  47. [47]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    RENO collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  50. [50]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A. Pukhov et al., CompHEP: A package for evaluation of Feynman diagrams and integration over multiparticle phase space, hep-ph/9908288 [INSPIRE].
  53. [53]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Avinanda Chaudhuri
    • 1
  • Walter Grimus
    • 2
    Email author
  • Biswarup Mukhopadhyaya
    • 1
  1. 1.Regional Centre for Accelerator-based Particle PhysicsHarish-Chandra Research InstituteAllahabadIndia
  2. 2.University of Vienna, Faculty of PhysicsViennaAustria

Personalised recommendations