Advertisement

Journal of High Energy Physics

, 2014:60 | Cite as

Doubly charged scalar decays in a type II seesaw scenario with two Higgs triplets

  • Avinanda Chaudhuri
  • Walter GrimusEmail author
  • Biswarup Mukhopadhyaya
Open Access
Article

Abstract

The type II seesaw mechanism for neutrino mass generation usually makes use of one complex scalar triplet. The collider signature of the doubly-charged scalar, the most striking feature of this scenario, consists mostly in decays into same-sign dileptons or same-sign W boson pairs. However, certain scenarios of neutrino mass generation, such as those imposing texture zeros by a symmetry mechanism, require at least two triplets in order to be consistent with the type II seesaw mechanism. We develop a model with two such complex triplets and show that, in such a case, mixing between the triplets can cause the heavier doubly-charged scalar mass eigenstate to decay into a singly-charged scalar and a W boson of the same sign. Considering a large number of benchmark points with different orders of magnitude of the ΔL = 2 Yukawa couplings, chosen in agreement with the observed neutrino mass and mixing pattern, we demonstrate that \( H_1^{++}\to H_2^{+}{W^{+}} \) can have more than 99 % branching fraction in the cases where the vacuum expectation values of the triplets are small. It is also shown that the above decay allows one to differentiate a two-triplet case at the LHC, through the ratios of events in various multi-lepton channels.

Keywords

Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    W. Konetschny and W. Kummer, Nonconservation of Total Lepton Number with Scalar Bosons, Phys. Lett. B 70 (1977) 433 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G. Gelmini and M. Roncadelli, Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number, Phys. Lett. B 99 (1981) 411 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  8. [8]
    R.N. Mohapatra and P. Pal, Massive neutrinos in physics and astrophysics, World Scientific, Singapore, (1991), pg. 127.CrossRefGoogle Scholar
  9. [9]
    E. Ma and U. Sarkar, Neutrino masses and leptogenesis with heavy Higgs triplets, Phys. Rev. Lett. 80 (1998) 5716 [hep-ph/9802445] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Schechter and J. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  11. [11]
    T. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  12. [12]
    S.M. Bilenky, J. Hosek and S. Petcov, On Oscillations of Neutrinos with Dirac and Majorana Masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    I.Y. Kobzarev, B. Martemyanov, L. Okun and M. Shchepkin, The phenomenology of neutrino oscillations, Sov. J. Nucl. Phys. 32 (1980) 823 [INSPIRE].Google Scholar
  14. [14]
    J. Gunion, R. Vega and J. Wudka, Higgs triplets in the standard model, Phys. Rev. D 42 (1990) 1673 [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Gunion, R. Vega and J. Wudka, Naturalness problems for ρ = 1 and other large one loop effects for a standard model Higgs sector containing triplet fields, Phys. Rev. D 43 (1991) 2322 [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Chakrabarti, D. Choudhury, R.M. Godbole and B. Mukhopadhyaya, Observing doubly charged Higgs bosons in photon-photon collisions, Phys. Lett. B 434 (1998) 347 [hep-ph/9804297] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E.J. Chun, K.Y. Lee and S.C. Park, Testing Higgs triplet model and neutrino mass patterns, Phys. Lett. B 566 (2003) 142 [hep-ph/0304069] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Han, H.E. Logan, B. Mukhopadhyaya and R. Srikanth, Neutrino masses and lepton-number violation in the littlest Higgs scenario, Phys. Rev. D 72 (2005) 053007 [hep-ph/0505260] [INSPIRE].ADSGoogle Scholar
  19. [19]
    T. Han, B. Mukhopadhyaya, Z. Si and K. Wang, Pair production of doubly-charged scalars: Neutrino mass constraints and signals at the LHC, Phys. Rev. D 76 (2007) 075013 [arXiv:0706.0441] [INSPIRE].ADSGoogle Scholar
  20. [20]
    P. Dey, A. Kundu and B. Mukhopadhyaya, Some consequences of a Higgs triplet, J. Phys. G 36 (2009) 025002 [arXiv:0802.2510] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Aoki, S. Kanemura, T. Shindou and K. Yagyu, An R-parity conserving radiative neutrino mass model without right-handed neutrinos, JHEP 07 (2010) 084 [Erratum ibid. 1011 (2010) 049] [arXiv:1005.5159] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Akeroyd and H. Sugiyama, Production of doubly charged scalars from the decay of singly charged scalars in the Higgs Triplet Model, Phys. Rev. D 84 (2011) 035010 [arXiv:1105.2209] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Aoki, S. Kanemura and K. Yagyu, Testing the Higgs triplet model with the mass difference at the LHC, Phys. Rev. D 85 (2012) 055007 [arXiv:1110.4625] [INSPIRE].ADSGoogle Scholar
  24. [24]
    P.H. Frampton, S.L. Glashow and D. Marfatia, Zeroes of the neutrino mass matrix, Phys. Lett. B 536 (2002) 79 [hep-ph/0201008] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Z.-z. Xing, Texture zeros and Majorana phases of the neutrino mass matrix, Phys. Lett. B 530 (2002) 159 [hep-ph/0201151] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Z.-z. Xing, A full determination of the neutrino mass spectrum from two zero textures of the neutrino mass matrix, Phys. Lett. B 539 (2002) 85 [hep-ph/0205032] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Honda, S. Kaneko and M. Tanimoto, Prediction and its stability in neutrino mass matrix with two zeros, JHEP 09 (2003) 028 [hep-ph/0303227] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    W.-l. Guo and Z.-z. Xing, Calculable CP-violating phases in the minimal seesaw model of leptogenesis and neutrino mixing, Phys. Lett. B 583 (2004) 163 [hep-ph/0310326] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Honda, S. Kaneko and M. Tanimoto, Seesaw enhancement of bilarge mixing in two zero textures, Phys. Lett. B 593 (2004) 165 [hep-ph/0401059] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Goswami and A. Watanabe, Minimal Seesaw Textures with Two Heavy Neutrinos, Phys. Rev. D 79 (2009) 033004 [arXiv:0807.3438] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Choubey, W. Rodejohann and P. Roy, Phenomenological consequences of four zero neutrino Yukawa textures, Nucl. Phys. B 808 (2009) 272 [Erratum ibid. 818 (2009) 136] [arXiv:0807.4289] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Goswami, S. Khan and W. Rodejohann, Minimal Textures in Seesaw Mass Matrices and their low and high Energy Phenomenology, Phys. Lett. B 680 (2009) 255 [arXiv:0905.2739] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Ghosh, S. Goswami and S. Gupta, Two Zero Mass Matrices and Sterile Neutrinos, JHEP 04 (2013) 103 [arXiv:1211.0118] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    W. Grimus, A.S. Joshipura, L. Lavoura and M. Tanimoto, Symmetry realization of texture zeros, Eur. Phys. J. C 36 (2004) 227 [hep-ph/0405016] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    W. Grimus and L. Lavoura, On a model with two zeros in the neutrino mass matrix, J. Phys. G 31 (2005) 693 [hep-ph/0412283] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Huitu, J. Maalampi, A. Pietila and M. Raidal, Doubly charged Higgs at LHC, Nucl. Phys. B 487 (1997) 27 [hep-ph/9606311] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Gunion, C. Loomis and K. Pitts, Searching for doubly charged Higgs bosons at future colliders, eConf C 960625 (1996) LTH096 [hep-ph/9610237] [INSPIRE].
  38. [38]
    J. Montero, C. de S. Pires and V. Pleitez, Neutrino masses through a type-II seesaw mechanism at TeV scale, Phys. Lett. B 502 (2001) 167 [hep-ph/0011296] [INSPIRE].
  39. [39]
    E. Ma, M. Raidal and U. Sarkar, Phenomenology of the neutrino mass giving Higgs triplet and the low-energy seesaw violation of lepton number, Nucl. Phys. B 615 (2001) 313 [hep-ph/0012101] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Muhlleitner and M. Spira, A note on doubly charged Higgs pair production at hadron colliders, Phys. Rev. D 68 (2003) 117701 [hep-ph/0305288] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Akeroyd and M. Aoki, Single and pair production of doubly charged Higgs bosons at hadron colliders, Phys. Rev. D 72 (2005) 035011 [hep-ph/0506176] [INSPIRE].ADSGoogle Scholar
  42. [42]
    B. Bajc, M. Nemevšek and G. Senjanović, Probing seesaw at LHC, Phys. Rev. D 76 (2007) 055011 [hep-ph/0703080] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A. Hektor, M. Kadastik, M. Muntel, M. Raidal and L. Rebane, Testing neutrino masses in little Higgs models via discovery of doubly charged Higgs at LHC, Nucl. Phys. B 787 (2007) 198 [arXiv:0705.1495] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Garayoa and T. Schwetz, Neutrino mass hierarchy and Majorana CP phases within the Higgs triplet model at the LHC, JHEP 03 (2008) 009 [arXiv:0712.1453] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    W. Grimus, R. Pfeiffer and T. Schwetz, A four neutrino model with a Higgs triplet, Eur. Phys. J. C 13 (2000) 125 [hep-ph/9905320] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A.M. Rotunno, Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  47. [47]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    RENO collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  50. [50]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A. Pukhov et al., CompHEP: A package for evaluation of Feynman diagrams and integration over multiparticle phase space, hep-ph/9908288 [INSPIRE].
  53. [53]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Avinanda Chaudhuri
    • 1
  • Walter Grimus
    • 2
    Email author
  • Biswarup Mukhopadhyaya
    • 1
  1. 1.Regional Centre for Accelerator-based Particle PhysicsHarish-Chandra Research InstituteAllahabadIndia
  2. 2.University of Vienna, Faculty of PhysicsViennaAustria

Personalised recommendations