# Doubly charged scalar decays in a type II seesaw scenario with two Higgs triplets

- 273 Downloads
- 8 Citations

## Abstract

The type II seesaw mechanism for neutrino mass generation usually makes use of one complex scalar triplet. The collider signature of the doubly-charged scalar, the most striking feature of this scenario, consists mostly in decays into same-sign dileptons or same-sign *W* boson pairs. However, certain scenarios of neutrino mass generation, such as those imposing texture zeros by a symmetry mechanism, require at least two triplets in order to be consistent with the type II seesaw mechanism. We develop a model with two such complex triplets and show that, in such a case, mixing between the triplets can cause the heavier doubly-charged scalar mass eigenstate to decay into a singly-charged scalar and a *W* boson of the same sign. Considering a large number of benchmark points with different orders of magnitude of the Δ*L* = 2 Yukawa couplings, chosen in agreement with the observed neutrino mass and mixing pattern, we demonstrate that \( H_1^{++}\to H_2^{+}{W^{+}} \) can have more than 99 % branching fraction in the cases where the vacuum expectation values of the triplets are small. It is also shown that the above decay allows one to differentiate a two-triplet case at the LHC, through the ratios of events in various multi-lepton channels.

## Keywords

Hadronic Colliders## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]ATLAS collaboration,
*Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC*,*Phys. Lett.***B 716**(2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar - [2]CMS collaboration,
*Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC*,*Phys. Lett.***B 716**(2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar - [3]W. Konetschny and W. Kummer,
*Nonconservation of Total Lepton Number with Scalar Bosons*,*Phys. Lett.***B 70**(1977) 433 [INSPIRE].ADSCrossRefGoogle Scholar - [4]G. Gelmini and M. Roncadelli,
*Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number*,*Phys. Lett.***B 99**(1981) 411 [INSPIRE].ADSCrossRefGoogle Scholar - [5]M. Magg and C. Wetterich,
*Neutrino Mass Problem and Gauge Hierarchy*,*Phys. Lett.***B 94**(1980) 61 [INSPIRE].ADSCrossRefGoogle Scholar - [6]G. Lazarides, Q. Shafi and C. Wetterich,
*Proton Lifetime and Fermion Masses in an*SO(10)*Model*,*Nucl. Phys.***B 181**(1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar - [7]R.N. Mohapatra and G. Senjanović,
*Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation*,*Phys. Rev.***D 23**(1981) 165 [INSPIRE].ADSGoogle Scholar - [8]R.N. Mohapatra and P. Pal,
*Massive neutrinos in physics and astrophysics*, World Scientific, Singapore, (1991), pg. 127.CrossRefGoogle Scholar - [9]E. Ma and U. Sarkar,
*Neutrino masses and leptogenesis with heavy Higgs triplets*,*Phys. Rev. Lett.***80**(1998) 5716 [hep-ph/9802445] [INSPIRE].ADSCrossRefGoogle Scholar - [10]J. Schechter and J. Valle,
*Neutrino Masses in*SU(2) × U(1)*Theories*,*Phys. Rev.***D 22**(1980) 2227 [INSPIRE].ADSGoogle Scholar - [11]T. Cheng and L.-F. Li,
*Neutrino Masses, Mixings and Oscillations in*SU(2) × U(1)*Models of Electroweak Interactions*,*Phys. Rev.***D 22**(1980) 2860 [INSPIRE].ADSGoogle Scholar - [12]S.M. Bilenky, J. Hosek and S. Petcov,
*On Oscillations of Neutrinos with Dirac and Majorana Masses*,*Phys. Lett.***B 94**(1980) 495 [INSPIRE].ADSCrossRefGoogle Scholar - [13]I.Y. Kobzarev, B. Martemyanov, L. Okun and M. Shchepkin,
*The phenomenology of neutrino oscillations*,*Sov. J. Nucl. Phys.***32**(1980) 823 [INSPIRE].Google Scholar - [14]J. Gunion, R. Vega and J. Wudka,
*Higgs triplets in the standard model*,*Phys. Rev.***D 42**(1990) 1673 [INSPIRE].ADSGoogle Scholar - [15]J. Gunion, R. Vega and J. Wudka,
*Naturalness problems for*ρ = 1*and other large one loop effects for a standard model Higgs sector containing triplet fields*,*Phys. Rev.***D 43**(1991) 2322 [INSPIRE].ADSGoogle Scholar - [16]S. Chakrabarti, D. Choudhury, R.M. Godbole and B. Mukhopadhyaya,
*Observing doubly charged Higgs bosons in photon-photon collisions*,*Phys. Lett.***B 434**(1998) 347 [hep-ph/9804297] [INSPIRE].ADSCrossRefGoogle Scholar - [17]E.J. Chun, K.Y. Lee and S.C. Park,
*Testing Higgs triplet model and neutrino mass patterns*,*Phys. Lett.***B 566**(2003) 142 [hep-ph/0304069] [INSPIRE].ADSCrossRefGoogle Scholar - [18]T. Han, H.E. Logan, B. Mukhopadhyaya and R. Srikanth,
*Neutrino masses and lepton-number violation in the littlest Higgs scenario*,*Phys. Rev.***D 72**(2005) 053007 [hep-ph/0505260] [INSPIRE].ADSGoogle Scholar - [19]T. Han, B. Mukhopadhyaya, Z. Si and K. Wang,
*Pair production of doubly-charged scalars: Neutrino mass constraints and signals at the LHC*,*Phys. Rev.***D 76**(2007) 075013 [arXiv:0706.0441] [INSPIRE].ADSGoogle Scholar - [20]P. Dey, A. Kundu and B. Mukhopadhyaya,
*Some consequences of a Higgs triplet*,*J. Phys.***G 36**(2009) 025002 [arXiv:0802.2510] [INSPIRE].ADSCrossRefGoogle Scholar - [21]M. Aoki, S. Kanemura, T. Shindou and K. Yagyu,
*An R-parity conserving radiative neutrino mass model without right-handed neutrinos*,*JHEP***07**(2010) 084 [*Erratum ibid.***1011**(2010) 049] [arXiv:1005.5159] [INSPIRE].ADSCrossRefGoogle Scholar - [22]A. Akeroyd and H. Sugiyama,
*Production of doubly charged scalars from the decay of singly charged scalars in the Higgs Triplet Model*,*Phys. Rev.***D 84**(2011) 035010 [arXiv:1105.2209] [INSPIRE].ADSGoogle Scholar - [23]M. Aoki, S. Kanemura and K. Yagyu,
*Testing the Higgs triplet model with the mass difference at the LHC*,*Phys. Rev.***D 85**(2012) 055007 [arXiv:1110.4625] [INSPIRE].ADSGoogle Scholar - [24]P.H. Frampton, S.L. Glashow and D. Marfatia,
*Zeroes of the neutrino mass matrix*,*Phys. Lett.***B 536**(2002) 79 [hep-ph/0201008] [INSPIRE].ADSCrossRefGoogle Scholar - [25]Z.-z. Xing,
*Texture zeros and Majorana phases of the neutrino mass matrix*,*Phys. Lett.***B 530**(2002) 159 [hep-ph/0201151] [INSPIRE].ADSCrossRefGoogle Scholar - [26]Z.-z. Xing,
*A full determination of the neutrino mass spectrum from two zero textures of the neutrino mass matrix*,*Phys. Lett.***B 539**(2002) 85 [hep-ph/0205032] [INSPIRE].ADSGoogle Scholar - [27]M. Honda, S. Kaneko and M. Tanimoto,
*Prediction and its stability in neutrino mass matrix with two zeros*,*JHEP***09**(2003) 028 [hep-ph/0303227] [INSPIRE].ADSCrossRefGoogle Scholar - [28]W.-l. Guo and Z.-z. Xing,
*Calculable CP-violating phases in the minimal seesaw model of leptogenesis and neutrino mixing*,*Phys. Lett.***B 583**(2004) 163 [hep-ph/0310326] [INSPIRE].ADSCrossRefGoogle Scholar - [29]M. Honda, S. Kaneko and M. Tanimoto,
*Seesaw enhancement of bilarge mixing in two zero textures*,*Phys. Lett.***B 593**(2004) 165 [hep-ph/0401059] [INSPIRE].ADSCrossRefGoogle Scholar - [30]S. Goswami and A. Watanabe,
*Minimal Seesaw Textures with Two Heavy Neutrinos*,*Phys. Rev.***D 79**(2009) 033004 [arXiv:0807.3438] [INSPIRE].ADSGoogle Scholar - [31]S. Choubey, W. Rodejohann and P. Roy,
*Phenomenological consequences of four zero neutrino Yukawa textures*,*Nucl. Phys.***B 808**(2009) 272 [*Erratum ibid.***818**(2009) 136] [arXiv:0807.4289] [INSPIRE].ADSCrossRefGoogle Scholar - [32]S. Goswami, S. Khan and W. Rodejohann,
*Minimal Textures in Seesaw Mass Matrices and their low and high Energy Phenomenology*,*Phys. Lett.***B 680**(2009) 255 [arXiv:0905.2739] [INSPIRE].ADSCrossRefGoogle Scholar - [33]M. Ghosh, S. Goswami and S. Gupta,
*Two Zero Mass Matrices and Sterile Neutrinos*,*JHEP***04**(2013) 103 [arXiv:1211.0118] [INSPIRE].ADSCrossRefGoogle Scholar - [34]W. Grimus, A.S. Joshipura, L. Lavoura and M. Tanimoto,
*Symmetry realization of texture zeros*,*Eur. Phys. J.***C 36**(2004) 227 [hep-ph/0405016] [INSPIRE].ADSCrossRefGoogle Scholar - [35]W. Grimus and L. Lavoura,
*On a model with two zeros in the neutrino mass matrix*,*J. Phys.***G 31**(2005) 693 [hep-ph/0412283] [INSPIRE].ADSCrossRefGoogle Scholar - [36]K. Huitu, J. Maalampi, A. Pietila and M. Raidal,
*Doubly charged Higgs at LHC*,*Nucl. Phys.***B 487**(1997) 27 [hep-ph/9606311] [INSPIRE].ADSCrossRefGoogle Scholar - [37]J. Gunion, C. Loomis and K. Pitts,
*Searching for doubly charged Higgs bosons at future colliders*,*eConf***C 960625**(1996) LTH096 [hep-ph/9610237] [INSPIRE]. - [38]J. Montero, C. de S. Pires and V. Pleitez,
*Neutrino masses through a type-II seesaw mechanism at TeV scale*,*Phys. Lett.***B 502**(2001) 167 [hep-ph/0011296] [INSPIRE]. - [39]E. Ma, M. Raidal and U. Sarkar,
*Phenomenology of the neutrino mass giving Higgs triplet and the low-energy seesaw violation of lepton number*,*Nucl. Phys.***B 615**(2001) 313 [hep-ph/0012101] [INSPIRE].ADSCrossRefGoogle Scholar - [40]M. Muhlleitner and M. Spira,
*A note on doubly charged Higgs pair production at hadron colliders*,*Phys. Rev.***D 68**(2003) 117701 [hep-ph/0305288] [INSPIRE].ADSGoogle Scholar - [41]A. Akeroyd and M. Aoki,
*Single and pair production of doubly charged Higgs bosons at hadron colliders*,*Phys. Rev.***D 72**(2005) 035011 [hep-ph/0506176] [INSPIRE].ADSGoogle Scholar - [42]B. Bajc, M. Nemevšek and G. Senjanović,
*Probing seesaw at LHC*,*Phys. Rev.***D 76**(2007) 055011 [hep-ph/0703080] [INSPIRE].ADSGoogle Scholar - [43]A. Hektor, M. Kadastik, M. Muntel, M. Raidal and L. Rebane,
*Testing neutrino masses in little Higgs models via discovery of doubly charged Higgs at LHC*,*Nucl. Phys.***B 787**(2007) 198 [arXiv:0705.1495] [INSPIRE].ADSCrossRefGoogle Scholar - [44]J. Garayoa and T. Schwetz,
*Neutrino mass hierarchy and Majorana CP phases within the Higgs triplet model at the LHC*,*JHEP***03**(2008) 009 [arXiv:0712.1453] [INSPIRE].ADSCrossRefGoogle Scholar - [45]W. Grimus, R. Pfeiffer and T. Schwetz,
*A four neutrino model with a Higgs triplet*,*Eur. Phys. J.***C 13**(2000) 125 [hep-ph/9905320] [INSPIRE].ADSCrossRefGoogle Scholar - [46]G. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A.M. Rotunno,
*Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches*,*Phys. Rev.***D 86**(2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar - [47]DAYA-BAY collaboration, F. An et al.,
*Observation of electron-antineutrino disappearance at Daya Bay*,*Phys. Rev. Lett.***108**(2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar - [48]RENO collaboration, J. Ahn et al.,
*Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment*,*Phys. Rev. Lett.***108**(2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar - [49]Particle Data Group collaboration, J. Beringer et al.,
*Review of Particle Physics (RPP)*,*Phys. Rev.***D 86**(2012) 010001 [INSPIRE].ADSGoogle Scholar - [50]N.D. Christensen and C. Duhr,
*FeynRules*—*Feynman rules made easy*,*Comput. Phys. Commun.***180**(2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar - [51]C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter,
*UFO*—*The Universal FeynRules Output*,*Comput. Phys. Commun.***183**(2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar - [52]A. Pukhov et al.,
*CompHEP: A package for evaluation of Feynman diagrams and integration over multiparticle phase space*, hep-ph/9908288 [INSPIRE]. - [53]J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer,
*MadGraph 5: Going Beyond*,*JHEP***06**(2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar

## Copyright information

**Open Access**This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.