DELPHES 3: a modular framework for fast simulation of a generic collider experiment


The version 3.0 of the Delphes fast-simulation is presented. The goal of Delphes is to allow the simulation of a multipurpose detector for phenomenological studies. The simulation includes a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system. Physics objects that can be used for data analysis are then reconstructed from the simulated detector response. These include tracks and calorimeter deposits and high level objects such as isolated electrons, jets, taus, and missing energy. The new modular approach allows for greater flexibility in the design of the simulation and reconstruction sequence. New features such as the particle-flow reconstruction approach, crucial in the first years of the LHC, and pile-up simulation and mitigation, which is needed for the simulation of the LHC detectors in the near future, have also been implemented. The Delphes framework is not meant to be used for advanced detector studies, for which more accurate tools are needed. Although some aspects of Delphes are hadron collider specific, it is flexible enough to be adapted to the needs of electron-positron collider experiments.


  1. [1]

    J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Dubois et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    ATLAS collaboration, The ATLAS Fast Track Simulation Project, ATL-SOFT-PROC-2011-038 (2011).

  3. [3]

    ATLAS collaboration, W. Lukas, Fast Simulation for ATLAS: Atlfast-II and ISF, J. Phys. Conf. Ser. 396 (2012) 022031 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    R. Rahmat, R. Kroeger and A. Giammanco, The fast simulation of the CMS experiment, J. Phys. Conf. Ser. 396 (2012) 062016 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    CMS collaboration, S. Abdullin, P. Azzi, F. Beaudette, P. Janot and A. Perrotta, The fast simulation of the CMS detector at LHC, J. Phys. Conf. Ser. 331 (2011) 032049 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    CMS collaboration, Comparison of the Fast Simulation of CMS with the first LHC data, CMS-DP-2010-039 (2010).

  7. [7]

    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  8. [8]

    ALEPH collaboration, D. Buskulic et al., Performance of the ALEPH detector at LEP, Nucl. Instrum. Meth. A 360 (1995) 481 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    CMS collaboration, Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus and MET, CMS-PAS-PFT-09-001.

  10. [10]

    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    M. Cacciari, G.P. Salam and G. Soyez, The Catchment Area of Jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    CMS collaboration, CMS Physics: Technical Design Report Volume 1: Detector Performance and Software, CERN-LHCC-2006-001.

  15. [15]

    ATLAS collaboration, Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].

  16. [16]

    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    CMS collaboration, Performance of CMS muon reconstruction in pp collision events at \( \sqrt{s} \) = 7 TeV,2012JINST 7P10002[arXiv:1206.4071] [INSPIRE].

  20. [20]

    ATLAS collaboration, Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].

  21. [21]

    CMS collaboration, Electron performance with 19.6 fb −1 of data collected at \( \sqrt{s} \) = 8 TeV with the CMS detector., CMS-DP-2013-003 (2013).

  22. [22]

    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    ATLAS collaboration, Jet energy resolution in proton-proton collisions at \( \sqrt{s} \) = 7 TeV recorded in 2010 with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2306 [arXiv:1210.6210] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    ATLAS collaboration, Performance of Missing Transverse Momentum Reconstruction in ATLAS with 2011 Proton-Proton Collisions at sqrts = 7 TeV, ATLAS-CONF-2012-101 (2012).

  25. [25]

    ATLAS collaboration, Performance of the ATLAS Inner Detector Track and Vertex Reconstruction in the High Pile-Up LHC Environment, ATLAS-CONF-2012-042 (2012).

  26. [26]

    CMS collaboration, Measurement of the top-quark mass in \( t\overline{t} \) events with lepton+jets final states in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 12 (2012) 105 [arXiv:1209.2319] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

  28. [28]

    CMS collaboration, b-Jet Identification in the CMS Experiment, CMS-PAS-BTV-11-004.

  29. [29]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  30. [30]

    I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun et al., ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization, Comput. Phys. Commun. 180 (2009) 2499 [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

  32. [32]

    S. Chekanov, Next generation input-output data format for HEP using Googles protocol buffers, arXiv:1306.6675 [INSPIRE].

  33. [33]

    M. Dobbs and J.B. Hansen, The HepMC C++ Monte Carlo event record for High Energy Physics, Comput. Phys. Commun. 134 (2001) 41 [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    L. Garren, P. Lebrun, StdHep User Manual,

  35. [35]

    J. Alwall, A. Ballestrero, P. Bartalini, S. Belov, E. Boos et al., A Standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

  37. [37]

    A. Giammanco, The CMS Fast Simulation, J. Phys.: Conf. Ser., submitted.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information




Corresponding author

Correspondence to M. Selvaggi.

Additional information

ArXiv ePrint: 1307.6346

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

The DELPHES 3 collaboration., de Favereau, J., Delaere, C. et al. DELPHES 3: a modular framework for fast simulation of a generic collider experiment. J. High Energ. Phys. 2014, 57 (2014).

Download citation


  • Hadron-Hadron Scattering