Advertisement

Journal of High Energy Physics

, 2014:45 | Cite as

Topological susceptibility in lattice Yang-Mills theory with open boundary condition

  • Abhishek Chowdhury
  • A. HarindranathEmail author
  • Jyotirmoy Maiti
  • Pushan Majumdar
Open Access
Article

Abstract

We find that using open boundary condition in the temporal direction can yield the expected value of the topological susceptibility in lattice SU(3) Yang-Mills theory. As a further check, we show that the result agrees with numerical simulations employing the periodic boundary condition. Our results support the preferability of the open boundary condition over the periodic boundary condition as the former allows for computation at smaller lattice spacings needed for continuum extrapolation at a lower computational cost.

Keywords

Lattice Gauge Field Theories Nonperturbative Effects Lattice Quantum Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Lüscher, Topology, the Wilson flow and the HMC algorithm, PoS (LATTICE 2010) 015 [arXiv:1009.5877] [INSPIRE].
  2. [2]
    M. Lüscher and S. Schaefer, Lattice QCD without topology barriers, JHEP 07 (2011) 036 [arXiv:1105.4749] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    M. Lüscher and S. Schaefer, Lattice QCD with open boundary conditions and twisted-mass reweighting, Comput. Phys. Commun. 184 (2013) 519 [arXiv:1206.2809] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    M. Grady, Connecting phase transitions between the 3D O(4) Heisenberg model and 4D SU(2) lattice gauge theory, arXiv:1104.3331 [INSPIRE].
  5. [5]
    E. Witten, Current algebra theorems for the U(1) Goldstone boson, Nucl. Phys. B 156 (1979) 269 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    G. Veneziano, U(1) without instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    E. Seiler, Some more remarks on the Witten-Veneziano formula for the eta-prime mass, Phys. Lett. B 525 (2002) 355 [hep-th/0111125] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L. Del Debbio, L. Giusti and C. Pica, Topological susceptibility in the SU(3) gauge theory, Phys. Rev. Lett. 94 (2005) 032003 [hep-th/0407052] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Dürr, Z. Fodor, C. Hölbling and T. Kurth, Precision study of the SU(3) topological susceptibility in the continuum, JHEP 04 (2007) 055 [hep-lat/0612021] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    M. Lüscher and F. Palombi, Universality of the topological susceptibility in the SU(3) gauge theory, JHEP 09 (2010) 110 [arXiv:1008.0732] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Lüscher, Topological effects in QCD and the problem of short distance singularities, Phys. Lett. B 593 (2004) 296 [hep-th/0404034] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    L. Giusti and M. Lüscher, Chiral symmetry breaking and the Banks-Casher relation in lattice QCD with Wilson quarks, JHEP 03 (2009) 013 [arXiv:0812.3638] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    H. Asakawa and M. Suzuki, Boundary susceptibilities of the Hubbard model in open chains, J. Phys. A 29 (1996) 7811.ADSMathSciNetGoogle Scholar
  14. [14]
  15. [15]
    ALPHA collaboration, M. Guagnelli, R. Sommer and H. Wittig, Precision computation of a low-energy reference scale in quenched lattice QCD, Nucl. Phys. B 535 (1998) 389 [hep-lat/9806005] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Necco and R. Sommer, The N f = 0 heavy quark potential from short to intermediate distances, Nucl. Phys. B 622 (2002) 328 [hep-lat/0108008] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Lüscher, Trivializing maps, the Wilson flow and the HMC algorithm, Commun. Math. Phys. 293 (2010) 899 [arXiv:0907.5491] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071 [arXiv:1006.4518] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    M. Lüscher and P. Weisz, Perturbative analysis of the gradient flow in non-abelian gauge theories, JHEP 02 (2011) 051 [arXiv:1101.0963] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Borsányi et al., High-precision scale setting in lattice QCD, JHEP 09 (2012) 010 [arXiv:1203.4469] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P. de Forcrand et al., Local topological and chiral properties of QCD, Nucl. Phys. Proc. Suppl. 73 (1999) 578 [hep-lat/9810033] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    G. McGlynn and R.D. Mawhinney, Scaling, topological tunneling and actions for weak coupling DWF calculations, arXiv:1311.3695 [INSPIRE].
  23. [23]
    A. Chowdhury, A.K. De, A. Harindranath, J. Maiti and S. Mondal, Topological charge density correlator in lattice QCD with two flavours of unimproved Wilson fermions, JHEP 11 (2012) 029 [arXiv:1208.4235] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Abhishek Chowdhury
    • 1
  • A. Harindranath
    • 1
    Email author
  • Jyotirmoy Maiti
    • 2
  • Pushan Majumdar
    • 3
  1. 1.Theory DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Department of PhysicsBarasat Government CollegeBarasat, KolkataIndia
  3. 3.Department of Theoretical PhysicsIndian Association for the Cultivation of ScienceKolkataIndia

Personalised recommendations