Journal of High Energy Physics

, 2014:30 | Cite as

On consistent truncations in \( \mathcal{N} \) = 2* holography

Open Access
Article

Abstract

Although Pilch-Warner (PW) gravitational renormalization group flow [1] passes a number of important consistency checks to be identified as a holographic dual to a large-N SU(N) \( \mathcal{N} \) = 2* supersymmetric gauge theory, it fails to reproduce the free energy of the theory on S4, computed with the localization techniques. This disagreement points to the existence of a larger dual gravitational consistent truncation, which in the gauge theory flat-space limit reduces to a PW flow. Such truncation was recently identified by Bobev-Elvang-Freedman-Pufu (BEFP) [2]. Additional bulk scalars of the BEFP gravitation truncation might lead to destabilization of the finite-temperature deformed PW flows, and thus modify the low-temperature thermodynamics and hydrodynamics of \( \mathcal{N} \) = 2* plasma. We compute the quasinormal spectrum of these bulk scalar fields in the thermal PW flows and demonstrate that these modes do not condense, as long as the masses of the \( \mathcal{N} \) = 2* hypermultiplet components are real.

Keywords

Gauge-gravity correspondence Black Holes in String Theory Holography and quark-gluon plasmas 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Pilch and N.P. Warner, N = 2 supersymmetric RG flows and the IIB dilaton, Nucl. Phys. B 594 (2001) 209 [hep-th/0004063] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    N. Bobev, H. Elvang, D.Z. Freedman and S.S. Pufu, Holography for \( \mathcal{N} \) = 2* on S 4, arXiv:1311.1508 [INSPIRE].
  3. [3]
    A. Buchel, A.W. Peet and J. Polchinski, Gauge dual and noncommutative extension of an N =2 supergravity solution, Phys. Rev. D 63 (2001) 044009 [hep-th/0008076] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    A. Buchel, J.G. Russo and K. Zarembo, Rigorous Test of Non-conformal Holography: Wilson Loops in N = 2* Theory, JHEP 03 (2013) 062 [arXiv:1301.1597] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    A. Buchel, Localization and holography in N = 2 gauge theories, JHEP 08 (2013) 004 [arXiv:1304.5652] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    A. Buchel, N = 2* hydrodynamics, Nucl. Phys. B 708 (2005) 451 [hep-th/0406200] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    A. Buchel, L. Lehner and R.C. Myers, Thermal quenches in N = 2* plasmas, JHEP 08 (2012) 049 [arXiv:1206.6785] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Buchel, Localization and holography in N = 2*, talk given at Caltech, California, U.S.A., 10 May 2013.Google Scholar
  10. [10]
    A. Buchel, Localization and holography of N = 2 gauge theories, talk given at The 2013 Great Lakes Strings Conference, University of Kentucky, Lexington, U.S.A., 17-19 May 2013.Google Scholar
  11. [11]
    A. Buchel, Localization and holography of N = 2 gauge theories, talk given at McGill University, Montréal, Canada, 15 November 2013.Google Scholar
  12. [12]
    A. Buchel and J.T. Liu, Thermodynamics of the N = 2* flow, JHEP 11 (2003) 031 [hep-th/0305064] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    A. Buchel, S. Deakin, P. Kerner and J.T. Liu, Thermodynamics of the N = 2* strongly coupled plasma, Nucl. Phys. B 784 (2007) 72 [hep-th/0701142] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C. Hoyos, S. Paik and L.G. Yaffe, Screening in strongly coupled N = 2* supersymmetric Yang-Mills plasma, JHEP 10 (2011) 062 [arXiv:1108.2053] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    P. Benincasa, A. Buchel and A.O. Starinets, Sound waves in strongly coupled non-conformal gauge theory plasma, Nucl. Phys. B 733 (2006) 160 [hep-th/0507026] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    A. Buchel, Bulk viscosity of gauge theory plasma at strong coupling, Phys. Lett. B 663 (2008) 286 [arXiv:0708.3459] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Buchel and C. Pagnutti, Bulk viscosity of N = 2* plasma, Nucl. Phys. B 816 (2009) 62 [arXiv:0812.3623] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    A. Buchel, Relaxation time of non-conformal plasma, Phys. Lett. B 681 (2009) 200 [arXiv:0908.0108] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    A. Lewkowycz, R.C. Myers and M. Smolkin, Observations on entanglement entropy in massive QFTs, JHEP 04 (2013) 017 [arXiv:1210.6858] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    A. Buchel and C. Pagnutti, Critical phenomena in N = 2* plasma, Phys. Rev. D 83 (2011) 046004 [arXiv:1010.3359] [INSPIRE].ADSGoogle Scholar
  21. [21]
    P. Hohenberg and B. Halperin, Theory of Dynamic Critical Phenomena, Rev. Mod. Phys. 49 (1977) 435 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Buchel, Chiral symmetry breaking in cascading gauge theory plasma, Nucl. Phys. B 847 (2011) 297 [arXiv:1012.2404] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Applied MathematicsThe University of Western OntarioLondonCanada
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations