Advertisement

Journal of High Energy Physics

, 2014:26 | Cite as

On new maximal supergravity and its BPS domain-walls

  • Adolfo GuarinoEmail author
Open Access
Article

Abstract

We revise the SU(3)-invariant sector of \( \mathcal{N} \) = 8 supergravity with dyonic SO(8) gaugings. By using the embedding tensor formalism, analytic expressions for the scalar potential, superpotential(s) and fermion mass terms are obtained as a function of the electromagnetic phase ω and the scalars in the theory. Equipped with these results, we explore non-supersymmetric AdS critical points at ω ≠ 0 for which perturbative stability could not be analysed before. The ω-dependent superpotential is then used to derive first-order flow equations and obtain new BPS domain-wall solutions at ω ≠ 0. We numerically look at steepest-descent paths motivated by the (conjectured) RG flows.

Keywords

Supersymmetry and Duality Supergravity Models Extended Supersymmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Kaluza, Zur Unitätsproblem der Physik (in German), Sitzungsberichte der Preussischen Akademie der Wissenschaften 54 (1921) 966.Google Scholar
  2. [2]
    O. Klein, Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English), Z. Phys. 37 (1926) 895 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    E. Cremmer and B. Julia, The SO(8) Supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    E. Cremmer, B. Julia, H. Lü and C. Pope, Dualization of dualities. 1., Nucl. Phys. B 523 (1998) 73 [hep-th/9710119] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B. de Wit, H. Samtleben and M. Trigiante, Maximal supergravity from IIB flux compactifications, Phys. Lett. B 583 (2004) 338 [hep-th/0311224] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    H. Samtleben, Lectures on Gauged Supergravity and Flux Compactifications, Class. Quant. Grav. 25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    G. Aldazabal, D. Marques, C. Núñez and J.A. Rosabal, On Type IIB moduli stabilization and N =4, 8 supergravities,Nucl. Phys. B 849 (2011) 80 [arXiv:1101.5954] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Dibitetto, A. Guarino and D. Roest, Exceptional Flux Compactifications, JHEP 05 (2012) 056 [arXiv:1202.0770] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    J.-P. Derendinger, Lecture notes on globally supersymmetric theories in four and two dimensions, ETH-TH-90-21 (1990).
  13. [13]
    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Borghese, A. Guarino and D. Roest, All G 2 invariant critical points of maximal supergravity, JHEP 12 (2012) 108 [arXiv:1209.3003] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    G. Dall’Agata and G. Inverso, de Sitter vacua in N = 8 supergravity and slow-roll conditions, Phys. Lett. B 718 (2013) 1132 [arXiv:1211.3414] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    A. Borghese, A. Guarino and D. Roest, Triality, Periodicity and Stability of SO(8) Gauged Supergravity, JHEP 05 (2013) 107 [arXiv:1302.6057] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    N. Warner, Some New Extrema of the Scalar Potential of Gauged N = 8 Supergravity, Phys. Lett. B 128 (1983) 169 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    A. Borghese, G. Dibitetto, A. Guarino, D. Roest and O. Varela, The SU(3)-invariant sector of new maximal supergravity, JHEP 03 (2013) 082 [arXiv:1211.5335] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    C.-h. Ahn and K. Woo, Supersymmetric domain wall and RG flow from 4-dimensional gauged N = 8 supergravity, Nucl. Phys. B 599 (2001) 83 [hep-th/0011121] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    C. Ahn and K. Woo, Are There Any New Vacua of Gauged N = 8 Supergravity in Four Dimensions?, Int. J. Mod. Phys. A 25 (2010) 1819 [arXiv:0904.2105] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Supergravity Instabilities of Non-Supersymmetric Quantum Critical Points, Class. Quant. Grav. 27 (2010) 235013 [arXiv:1006.2546] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    B. de Wit and H. Nicolai, Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions, JHEP 05 (2013) 077 [arXiv:1302.6219] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three-dimensions, JHEP 04 (2001) 022 [hep-th/0103032] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    B. de Wit and H. Nicolai, The Consistency of the S 7 Truncation in D = 11 Supergravity, Nucl. Phys. B 281 (1987) 211 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    H. Nicolai and K. Pilch, Consistent Truncation of D = 11 Supergravity on AdS 4× S 7, JHEP 03 (2012) 099 [arXiv:1112.6131] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    H. Godazgar, M. Godazgar and H. Nicolai, Testing the non-linear flux ansatz for maximal supergravity, Phys. Rev. D 87 (2013) 085038 [arXiv:1303.1013] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  30. [30]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  31. [31]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    H. Boonstra, K. Skenderis and P. Townsend, The domain wall/QFT correspondence, JHEP 01 (1999) 003 [hep-th/9807137] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS /CFT correspondence, hep-th/0201253 [INSPIRE].
  35. [35]
    C.-h. Ahn and J. Paeng, Three-dimensional SCFTs, supersymmetric domain wall and renormalization group flow, Nucl. Phys. B 595 (2001) 119 [hep-th/0008065] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    C.-h. Ahn and T. Itoh, An N = 1 supersymmetric G-2 invariant flow in M-theory, Nucl. Phys. B 627 (2002) 45 [hep-th/0112010] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Holographic, N = 1 Supersymmetric RG Flows on M2 Branes, JHEP 09 (2009) 043 [arXiv:0901.2736] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    C.-h. Ahn and K.-s. Woo, Domain wall and membrane flow from other gauged D = 4, N = 8 supergravity. Part 1, Nucl. Phys. B 634 (2002) 141 [hep-th/0109010] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    C.-h. Ahn and K.-s. Woo, Domain wall from gauged D = 4, N = 8 supergravity. Part 2, JHEP 11 (2003) 014 [hep-th/0209128] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    R. Corrado, K. Pilch and N.P. Warner, An N = 2 supersymmetric membrane flow, Nucl. Phys. B 629 (2002) 74 [hep-th/0107220] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    J. Bagger and N. Lambert, Modeling Multiple M2s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    C. Ahn, Towards Holographic Gravity Dual of N = 1 Superconformal Chern-Simons Gauge Theory, JHEP 07 (2008) 101 [arXiv:0806.4807] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    C. Ahn, Holographic Supergravity Dual to Three Dimensional N = 2 Gauge Theory, JHEP 08 (2008) 083 [arXiv:0806.1420] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    C. Ahn, The Gauge Dual of Gauged N = 8 Supergravity Theory, Int. J. Mod. Phys. A 25 (2010) 3025 [arXiv:0905.3943] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Le Diffon, H. Samtleben and M. Trigiante, N = 8 Supergravity with Local Scaling Symmetry, JHEP 04 (2011) 079 [arXiv:1103.2785] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions, Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  51. [51]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034 [hep-th/0602024] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    N. Warner, Some Properties of the Scalar Potential in Gauged Supergravity Theories, Nucl. Phys. B 231 (1984) 250 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    T. Fischbacher, K. Pilch and N.P. Warner, New Supersymmetric and Stable, Non-Supersymmetric Phases in Supergravity and Holographic Field Theory, arXiv:1010.4910 [INSPIRE].
  56. [56]
    J. Tarrío and O. Varela, Electric/magnetic duality and RG flows in AdS4/CFT3, JHEP 01 (2014) 071 [arXiv:1311.2933] [INSPIRE].CrossRefGoogle Scholar
  57. [57]
    M. Green, J. Schwarz and E. Witten, Superstring Theory. Vol. I and II, Cambridge University Press (1987).Google Scholar
  58. [58]
    T. Fischbacher, Fourteen new stationary points in the scalar potential of SO(8)-gauged N =8, D = 4 supergravity,JHEP 09 (2010) 068 [arXiv:0912.1636] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Albert Einstein Center for Fundamental PhysicsInstitute for Theoretical Physics, Bern UniversityBernSwitzerland

Personalised recommendations