Skip to main content

Higgs Strahlung at the Large Hadron Collider in the 2-Higgs-doublet model

Abstract

We present a calculation of all relevant contributions to associated production of a Higgs boson with a weak gauge boson in the 2-Higgs-doublet model (2HDM) at the LHC, pp → ϕ, with ϕ ∈ {h, H 0 , A} and V ∈ {W, Z}. While for the W ϕ mode, this mostly amounts to a simple rescaling of the Standard Model (SM) cross section, the cross section depends on several 2HDM parameters. The ratio σ , for which we present the currently most complete SM prediction, therefore appears to be a sensitive probe of possible New Physics effects. We study its numerical dependence on the top and bottom Yukawa couplings, including their sign. Furthermore, we consider the Wϕ/Zϕ ratio in exemplary 2HDM scenarios and briefly address the effects in the boosted regime. Analogous studies for other 2HDM scenarios will become possible with an upcoming version of the program vh@nnlo which incorporates the 2HDM effects.

References

  1. [1]

    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    LHC Higgs Cross Section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].

  4. [4]

    TEVNPH (Tevatron New Phenomina and Higgs Working Group), CDF, D0 collaboration, Combined CDF and D0 search for standard model Higgs boson production with up to 10.0 fb −1 of data, arXiv:1203.3774 [INSPIRE].

  5. [5]

    ATLAS collaboration, Search for associated production of the Higgs boson in the WH → WWW  → lνlνlνandZH → ZWW  → lllνlν channels with the ATLAS detector at the LHC, ATLAS-CONF-2013-075 (2013).

  6. [6]

    ATLAS collaboration, Search for the bb decay of the standard model Higgs boson in associated W/ZH production with the ATLAS detector, ATLAS-CONF-2013-079 (2013).

  7. [7]

    ATLAS collaboration, Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, ATLAS-CONF-2013-011 (2013).

  8. [8]

    CMS collaboration, Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for LHCp 2013, CMS-PAS-HIG-13-012 (2013).

  9. [9]

    CMS collaboration, Search for invisible Higgs produced in association with a Z boson, CMS-PAS-HIG-13-018 (2013).

  10. [10]

    CMS collaboration, VH with H → W W → ℓνℓν and V → jj, CMS-PAS-HIG-13-017 (2013).

  11. [11]

    T. Han and S. Willenbrock, QCD correction to the pp → W H and ZH total cross-sections, Phys. Lett. B 273 (1991) 167 [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    M. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003 [hep-ph/0306234] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    S. Dawson, T. Han, W. Lai, A. Leibovich and I. Lewis, Resummation effects in vector-boson and Higgs associated production, Phys. Rev. D 86 (2012) 074007 [arXiv:1207.4207] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    A. Denner, S. Dittmaier, S. Kallweit and A. Muck, Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK, JHEP 03 (2012) 075 [arXiv:1112.5142] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].

  18. [18]

    D.A. Dicus and C. Kao, Higgs boson-Z 0 production from gluon fusion, Phys. Rev. D 38 (1988) 1008 [Erratum ibid. D 42 (1990) 2412] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    B.A. Kniehl, Associated production of Higgs and Z bosons from gluon fusion in hadron collisions, Phys. Rev. D 42 (1990) 2253 [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1 [INSPIRE].

    Google Scholar 

  21. [21]

    A. Akeroyd, Nonminimal neutral Higgs bosons at LEP-2, Phys. Lett. B 377 (1996) 95 [hep-ph/9603445] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    A. Akeroyd, Fermiophobic and other nonminimal neutral Higgs bosons at the LHC, J. Phys. G 24 (1998) 1983 [hep-ph/9803324] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    N. Craig and S. Thomas, Exclusive signals of an extended Higgs sector, JHEP 11 (2012) 083 [arXiv:1207.4835] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs searches and constraints on two Higgs doublet models, Phys. Rev. D 88 (2013) 015018 [arXiv:1305.1624] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    D.S. Alves, P.J. Fox and N.J. Weiner, Higgs signals in a type I 2HDM or with a sister Higgs, arXiv:1207.5499 [INSPIRE].

  28. [28]

    N. Craig et al., Multi-lepton signals of multiple Higgs bosons, JHEP 02 (2013) 033 [arXiv:1210.0559] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, The 2HDM-X and Large Hadron Collider data, Phys. Rev. D 87 (2013) 115013 [arXiv:1210.4922] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    A. Azatov and J. Galloway, Electroweak symmetry breaking and the Higgs boson: confronting theories at colliders, Int. J. Mod. Phys. A 28 (2013) 1330004 [arXiv:1212.1380] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    P. Ferreira, R. Santos, H.E. Haber and J.P. Silva, Mass-degenerate Higgs bosons at 125 GeV in the two-Higgs-doublet model, Phys. Rev. D 87 (2013) 055009 [arXiv:1211.3131] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, JHEP 07 (2013) 053 [arXiv:1302.4022] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    B. Grinstein and P. Uttayarat, Carving out parameter space in type-II two Higgs doublets model, JHEP 06 (2013) 094 [Erratum ibid. 1309 (2013) 110] [arXiv:1304.0028] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    M. Krawczyk, D. Sokolowska and B. Swiezewska, 2HDM with Z 2 symmetry in light of new LHC data, J. Phys. Conf. Ser. 447 (2013) 012050 [arXiv:1303.7102] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    W. Altmannshofer, S. Gori and G.D. Kribs, A minimal flavor violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    C.-W. Chiang and K. Yagyu, Implications of Higgs boson search data on the two-Higgs doublet models with a softly broken Z 2 symmetry, JHEP 07 (2013) 160 [arXiv:1303.0168] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    A. Barroso, P. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM at the LHCThe story so far, arXiv:1304.5225 [INSPIRE].

  38. [38]

    N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].

  39. [39]

    C.-Y. Chen and S. Dawson, Exploring two Higgs doublet models through Higgs production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    O. Eberhardt, U. Nierste and M. Wiebusch, Status of the two-Higgs-doublet model of type-II, JHEP 07 (2013) 118 [arXiv:1305.1649] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    P. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM confronting LHC data, arXiv:1305.4587 [INSPIRE].

  42. [42]

    ATLAS collaboration, Search for Higgs bosons in two-Higgs-doublet models in the H → WW → eνμν channel with the ATLAS detector, ATLAS-CONF-2013-027 (2013).

  43. [43]

    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    C. Kao, Production of a pseudoscalar Higgs with a Z boson from gluon fusion, Phys. Rev. D 46 (1992) 4907 [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    J. Yin, W.-G. Ma, R.-Y. Zhang and H.-S. Hou, A0 Z0 associated production at the Large Hadron collider in the minimal supersymmetric standard model, Phys. Rev. D 66 (2002) 095008 [hep-ph/0209279] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    C. Kao, G. Lovelace and L.H. Orr, Detecting a Higgs pseudoscalar with a Z boson at the LHC, Phys. Lett. B 567 (2003) 259 [hep-ph/0305028] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    C. Kao and S. Sachithanandam, Detecting a Higgs pseudoscalar with a Z boson produced in bottom quark fusion, Phys. Lett. B 620 (2005) 80 [hep-ph/0411331] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    L.L. Yang, C.S. Li, J.J. Liu and L.G. Jin, Production of scalar Higgs bosons associated with Z0 boson at the CERN LHC in the MSSM, J. Phys. G 30 (2004) 1821 [hep-ph/0312179] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    Q. Li, C.S. Li, J.J. Liu, L.G. Jin and C.-P. Yuan, Next-to-leading order QCD predictions for A0 Z0 associated production at the CERN Large Hadron Collider, Phys. Rev. D 72 (2005) 034032 [hep-ph/0501070] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    B.A. Kniehl and C.P. Palisoc, Associated production of Z and neutral Higgs bosons at the CERN Large Hadron Collider, Phys. Rev. D 85 (2012) 075027 [arXiv:1112.1575] [INSPIRE].

    ADS  Google Scholar 

  51. [51]

    O. Brein, R.V. Harlander and T.J.E. Zirke, vh@nnloHiggs strahlung at hadron colliders, Comput. Phys. Commun. 184 (2013) 998 [arXiv:1210.5347] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    R. Hamberg, W. van Neerven and T. Matsuura, A Complete calculation of the order \( \alpha_s^2 \) correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403-404] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    O. Brein, R. Harlander, M. Wiesemann and T. Zirke, Top-quark mediated effects in hadronic Higgs-strahlung, Eur. Phys. J. C 72 (2012) 1868 [arXiv:1111.0761] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    L. Altenkamp, S. Dittmaier, R.V. Harlander, H. Rzehak and T.J.E. Zirke, Gluon-induced Higgs-strahlung at next-to-leading order QCD, JHEP 02 (2013) 078 [arXiv:1211.5015] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    D. Graudenz, M. Spira and P. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    D. Eriksson, J. Rathsman and O. Stal, 2HDMC: two-Higgs-doublet model calculator physics and manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  64. [64]

    D. Eriksson, J. Rathsman and O. Stal, 2HDMC: two-Higgs-doublet model calculator, Comput. Phys. Commun. 181 (2010) 833 [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    R. Harlander, M. Krämer and M. Schumacher, Bottom-quark associated Higgs-boson production: reconciling the four- and five-flavour scheme approach, arXiv:1112.3478 [INSPIRE].

  66. [66]

    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  67. [67]

    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  69. [69]

    O. Brein et al., Precision calculations for associated WH and ZH production at hadron colliders, hep-ph/0402003 [INSPIRE].

  70. [70]

    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  71. [71]

    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].

    ADS  Google Scholar 

  73. [73]

    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    S. Biswas, E. Gabrielli and B. Mele, Single top and Higgs associated production as a probe of the Htt coupling sign at the LHC, JHEP 01 (2013) 088 [arXiv:1211.0499] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    S. Biswas, E. Gabrielli, F. Margaroli and B. Mele, Direct constraints on the top-Higgs coupling from the 8 TeV LHC data, JHEP 07 (2013) 073 [arXiv:1304.1822] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    C. Englert, M. McCullough and M. Spannowsky, Gluon-initiated associated production boosts Higgs physics, arXiv:1310.4828 [INSPIRE].

  77. [77]

    G.Ferrera, private communication.

  78. [78]

    R.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefan Liebler.

Additional information

ArXiv ePrint: 1307.8122

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Harlander, R.V., Liebler, S. & Zirke, T. Higgs Strahlung at the Large Hadron Collider in the 2-Higgs-doublet model. J. High Energ. Phys. 2014, 23 (2014). https://doi.org/10.1007/JHEP02(2014)023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2014)023

Keywords

  • QCD Phenomenology
  • Hadronic Colliders