Skip to main content

Indefinite theta functions and black hole partition functions

Abstract

We explore various aspects of supersymmetric black hole partition functions in four-dimensional toroidally compactified heterotic string theory. These functions suffer from divergences owing to the hyperbolic nature of the charge lattice in this theory, which prevents them from having well-defined modular transformation properties. In order to rectify this, we regularize these functions by converting the divergent series into indefinite theta functions, thereby obtaining fully regulated single-centered black hole partitions functions.

References

  1. [1]

    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Counting dyons in N = 4 string theory, Nucl. Phys. B 484 (1997) 543 [hep-th/9607026] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  2. [2]

    A. Dabholkar, Exact counting of black hole microstates, Phys. Rev. Lett. 94 (2005) 241301 [hep-th/0409148] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  3. [3]

    D. Shih, A. Strominger and X. Yin, Recounting Dyons in N = 4 string theory, JHEP 10 (2006) 087 [hep-th/0505094] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. [4]

    D.P. Jatkar and A. Sen, Dyon spectrum in CHL models, JHEP 04 (2006) 018 [hep-th/0510147] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  5. [5]

    J.R. David, D.P. Jatkar and A. Sen, Dyon spectrum in generic N = 4 supersymmetric Z(N) orbifolds, JHEP 01 (2007) 016 [hep-th/0609109] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  6. [6]

    A. Sen, N = 8 Dyon Partition Function and Walls of Marginal Stability, JHEP 07 (2008) 118 [arXiv:0803.1014] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    A. Dabholkar, J. Gomes and S. Murthy, Counting all dyons in N = 4 string theory, JHEP 05 (2011) 059 [arXiv:0803.2692] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  8. [8]

    H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string, Phys. Rev. D 70 (2004) 106007 [hep-th/0405146] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. [9]

    D. Shih and X. Yin, Exact black hole degeneracies and the topological string, JHEP 04 (2006) 034 [hep-th/0508174] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  10. [10]

    G. Lopes Cardoso, B. de Wit, J. Käppeli and T. Mohaupt, Black hole partition functions and duality, JHEP 03 (2006) 074 [hep-th/0601108] [INSPIRE].

    Article  Google Scholar 

  11. [11]

    S. Zwegers, Mock Theta Functions, arXiv:0807.4834.

  12. [12]

    A. Dabholkar, D. Gaiotto and S. Nampuri, Comments on the spectrum of CHL dyons, JHEP 01 (2008) 023 [hep-th/0702150] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  13. [13]

    S. Nampuri, P.K. Tripathy and S.P. Trivedi, Duality Symmetry and the Cardy Limit, JHEP 07 (2008) 072 [arXiv:0711.4671] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  14. [14]

    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  15. [15]

    S. Ferrara and A. Van Proeyen, A theorem on N = 2 special Kähler product manifolds, Class. Quant. Grav. 6 (1989) L243 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  16. [16]

    P.S. Aspinwall, Compactification, geometry and duality: N = 2, hep-th/0001001 [INSPIRE].

  17. [17]

    K. Behrndt et al., Classical and quantum N = 2 supersymmetric black holes, Nucl. Phys. B 488 (1997) 236 [hep-th/9610105] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. [18]

    A. Sen, Two centered black holes and N = 4 dyon spectrum, JHEP 09 (2007) 045 [arXiv:0705.3874] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    M.C. Cheng and E. Verlinde, Dying Dyons Dont Count, JHEP 09 (2007) 070 [arXiv:0706.2363] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. [20]

    G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Asymptotic degeneracy of dyonic N =4 string states and black hole entropy, JHEP 12(2004) 075 [hep-th/0412287] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    B. de Wit, BPS black holes, Nucl. Phys. Proc. Suppl. 171 (2007) 16 [arXiv:0704.1452] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, seventh edition, Elsevier, Amsterdam The Netherlands (2007), pg. 889.

    MATH  Google Scholar 

  23. [23]

    A. Dabholkar, S. Murthy and D. Zagier, Quantum Black Holes, Wall Crossing and Mock Modular Forms, arXiv:1208.4074 [INSPIRE].

  24. [24]

    J. Manschot, Stability and duality in N = 2 supergravity, Commun. Math. Phys. 299 (2010) 651 [arXiv:0906.1767] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  25. [25]

    J. Manschot, Wall-crossing of D4-branes using flow trees, Adv. Theor. Math. Phys. 15 (2011) 1 [arXiv:1003.1570] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  26. [26]

    A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Precision counting of small black holes, JHEP 10 (2005) 096 [hep-th/0507014] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  27. [27]

    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  28. [28]

    A. Sen, Quantum Entropy Function from AdS 2 /CF T 1 Correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    L. Göttsche and D. Zagier, Jacobi forms and the structure of Donaldson invariants for 4-manifolds with b + = 1, alg-geom/9612020.

  30. [30]

    M. Alim et al., Wall-crossing holomorphic anomaly and mock modularity of multiple M5-branes, arXiv:1012.1608 [INSPIRE].

  31. [31]

    S. Alexandrov, J. Manschot and B. Pioline, D3-instantons, Mock Theta Series and Twistors, JHEP 04 (2013) 002 [arXiv:1207.1109] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  32. [32]

    J. Manschot, B. Pioline and A. Sen, From Black Holes to Quivers, JHEP 11 (2012) 023 [arXiv:1207.2230] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michele Cirafici.

Additional information

ArXiv ePrint: 1309.4428

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Cardoso, G.L., Cirafici, M., Jorge, R. et al. Indefinite theta functions and black hole partition functions. J. High Energ. Phys. 2014, 19 (2014). https://doi.org/10.1007/JHEP02(2014)019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2014)019

Keywords

  • Supersymmetry and Duality
  • Black Holes in String Theory
  • Extended Supersymmetry
  • Black Holes