Renormalization and redundancy in 2d quantum field theories

  • Nicolas Behr
  • Anatoly Konechny
Open Access


We analyze renormalization group (RG) flows in two-dimensional quantum field theories in the presence of redundant directions. We use the operator picture in which redundant operators are total derivatives. Our analysis has three levels of generality. We introduce a redundancy anomaly equation which is analyzed together with the RG anomaly equation previously considered by H. Osborn [8] and D. Friedan and A. Konechny [7]. The Wess-Zumino consistency conditions between these anomalies yield a number of general relations which should hold to all orders in perturbation theory. We further use conformal perturbation theory to study field theories in the vicinity of a fixed point when some of the symmetries of the fixed point are broken by the perturbation. We relate various anomaly coefficients to OPE coefficients at the fixed point and analyze which operators become redundant and how they participate in the RG flow. Finally, we illustrate our findings by three explicit models constructed as current-current perturbations of SU(2) k WZW model. At each generality level we discuss the geometric picture behind redundancy and how one can reduce the number of couplings by taking a quotient with respect to the redundant directions. We point to the special role of polar representations for the redundancy groups.


Field Theories in Lower Dimensions Anomalies in Field and String Theories Renormalization Group 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2d field theory, JETP Lett. 43 (1986) 730 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    I. Affleck and A.W. Ludwig, Universal nonintegerground state degeneracyin critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Zamolodchikov, Renormalization group and perturbation theory near fixed points in two-dimensional field theory, Sov. J. Nucl. Phys. 46 (1987) 1090 [INSPIRE].MathSciNetGoogle Scholar
  5. [5]
    A. Recknagel, D. Roggenkamp and V. Schomerus, On relevant boundary perturbations of unitary minimal models, Nucl. Phys. B 588 (2000) 552 [hep-th/0003110] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    S. Fredenhagen, M.R. Gaberdiel and C. Schmidt-Colinet, Bulk flows in Virasoro minimal models with boundaries, J. Phys. A 42 (2009) 495403 [arXiv:0907.2560] [INSPIRE].MathSciNetGoogle Scholar
  7. [7]
    D. Friedan and A. Konechny, Gradient formula for the β-function of 2d quantum field theory, J. Phys. A 43 (2010) 215401 [arXiv:0910.3109] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    G. Perelman, The Entropy formula for the Ricci flow and its geometric applications, math/0211159 [INSPIRE].
  10. [10]
    A.A. Tseytlin, On σ-model RG flow,central chargeaction and Perelmans entropy, Phys. Rev. D 75 (2007) 064024 [hep-th/0612296] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    M.R. Douglas, Spaces of quantum field theories, arXiv:1005.2779 [INSPIRE].
  12. [12]
    C. Vafa, c theorem and the topology of 2-d QFTs, Phys. Lett. B 212 (1988) 28 [INSPIRE].
  13. [13]
    S.R. Das, G. Mandal and S.R. Wadia, Stochastic differential equations on two-dimension theory space and Morse theory, Mod. Phys. Lett. A 4 (1989) 745 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    G.W. Moore, Finite in all directions, hep-th/9305139 [INSPIRE].
  15. [15]
    S. Weinberg, The quantum theory of fields, Vol. 1, Cambridge University Press, Cambridge U.K. (1995).CrossRefGoogle Scholar
  16. [16]
    F.J. Wegner, Some invariance properties of the renormalization group, J. Phys. C 7 (1974) 2098.ADSGoogle Scholar
  17. [17]
    J.A. Dietz and T.R. Morris, Redundant operators in the exact renormalisation group and in the f (R) approximation to asymptotic safety, JHEP 07 (2013) 064 [arXiv:1306.1223] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    J.-F. Fortin, B. Grinstein and A. Stergiou, Limit cycles and conformal invariance, JHEP 01 (2013) 184 [arXiv:1208.3674] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.B. Einhorn and J. Wudka, Effective β-functions for effective field theory, JHEP 08 (2001) 025 [hep-ph/0105035] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    J.S. Schwinger, The Theory of quantized fields. 1., Phys. Rev. 82 (1951) 914 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    J. Lowenstein, Differential vertex operations in Lagrangian field theory, Commun. Math. Phys. 24 (1971) 1 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    Y.-M.P. Lam, Perturbation Lagrangian theory for scalar fields: Ward-Takahasi identity and current algebra, Phys. Rev. D 6 (1972) 2145 [INSPIRE].ADSGoogle Scholar
  24. [24]
    T.E. Clark and J.H. Lowenstein, Generalization of Zimmermanns Normal-Product Identity, Nucl. Phys. B 113 (1976) 109 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    P. Breitenlohner and D. Maison, Dimensional Renormalization and the Action Principle, Commun. Math. Phys. 52 (1977) 11 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    M. Bergere and Y.-M.P. Lam, Bogolyubov-Parasiuk Theorem in the alpha Parametric Representation, J. Math. Phys. 17 (1976) 1546 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    G. Curci and G. Paffuti, Consistency between the string background field equation of motion and the vanishing of the conformal anomaly, Nucl. Phys. B 286 (1987) 399 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    I. Jack and H. Osborn, Analogs of the c-theorem for four-dimensional renormalisable field theories, Nucl. Phys. B 343 (1990) 647.ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    Y. Nakayama, Consistency of local renormalization group in D = 3, arXiv:1307.8048 [INSPIRE].
  30. [30]
    B. Grinstein, A. Stergiou and D. Stone, Consequences of Weyl consistency conditions, JHEP 11 (2013) 195 [arXiv:1308.1096] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    Y. Nakayama, Vector β-function, Int. J. Mod. Phys. A 28 (2013) 1350166 [arXiv:1310.0574] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D. Friedan and A. Konechny, unpublished and work in progress.Google Scholar
  33. [33]
    M.R. Gaberdiel, A. Konechny and C. Schmidt-Colinet, Conformal perturbation theory beyond the leading order, J. Phys. A 42 (2009) 105402 [arXiv:0811.3149] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    R. Guida and N. Magnoli, All order IR finite expansion for short distance behavior of massless theories perturbed by a relevant operator, Nucl. Phys. B 471 (1996) 361 [hep-th/9511209] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    D. Friedan and A. Konechny, Curvature formula for the space of 2 − D conformal field theories, JHEP 09 (2012) 113 [arXiv:1206.1749] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    D.Z. Freedman, M. Headrick and A. Lawrence, On closed string tachyon dynamics, Phys. Rev. D 73 (2006) 066015 [hep-th/0510126] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    B. Gerganov, A. LeClair and M. Moriconi, On the β-function for anisotropic current interactions in 2-D, Phys. Rev. Lett. 86 (2001) 4753 [hep-th/0011189] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A.W. Ludwig and K.J. Wiese, The four loop β-function in the 2 − D non-Abelian Thirring model and comparison with its conjecturedexactform, Nucl. Phys. B 661 (2003) 577 [cond-mat/0211531] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    P. Azaria, P. Lecheminant and A.M. Tsvelik, Restoration of symmetry by interactions and nonreliability of the perturbative renormalization group approach, cond-mat/9806099 [cond-mat/9806099].
  40. [40]
    R.M. Konik, H. Saleur and A.W. Ludwig, Interplay of the scaling limit and the renormalization group: implications for symmetry restoration, Phys. Rev. B 66 (2002) 075105 [cond-mat/0009166] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Chaudhuri and J. Schwartz, A criterion for integrably marginal operators, Phys. Lett. B 219 (1989) 291 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    S. Hassan and A. Sen, Marginal deformations of WZNW and coset models from O(d,d) transformation, Nucl. Phys. B 405 (1993) 143 [hep-th/9210121] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    V. Fateev, E. Onofri and A.B. Zamolodchikov, Integrable deformations of the O(3) σ-model. The sausage model., Nucl. Phys. B 406 (1993) 521 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    R.S. Palais and C. Terng, Critical point theory and submanifold geometry, Springer, Heidelberg Germany (1988).zbMATHGoogle Scholar
  46. [46]
    J. Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Am. Math. Soc. 288 (1985) 125.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of MathematicsHeriot-Watt UniversityEdinburghU.K
  2. 2.Maxwell Institute for Mathematical SciencesEdinburghU.K

Personalised recommendations