Long-lived higgsinos as probes of gravitino dark matter at the LHC

Abstract

We investigate the LHC sensitivity to supersymmetric models with light higgsinos, small R-parity breaking and gravitino dark matter. The limits on decaying gravitino dark matter from gamma-ray searches with the Fermi-LAT put a lower bound on the higgsino-like neutralino NLSP decay length, giving rise to a displaced-vertex collider signature. Using publicly available tools for simulation of signal, background and detector response, we find that higgsinos with masses of 100 – 400 GeV and R-parity violation of ζ ~ 10−8 – 10−9 can show up in the 8 TeV LHC data with 10 – 30 fb−1 of integrated luminosity. We demonstrate that in the case of a signal, the higgsino mass can be determined by reconstruction of the dimuon mass edge.

References

  1. [1]

    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    L. Bergstrom, Nonbaryonic dark matter: observational evidence and detection methods, Rept. Prog. Phys. 63 (2000) 793 [hep-ph/0002126] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    H. Baer and X. Tata, Weak scale supersymmetry: From superfields to scattering events, Cambridge University Press, Cambridge, U.K. (2006).

    Book  Google Scholar 

  5. [5]

    F. Brummer, Supersymmetric models with light higgsinos, arXiv:1205.1448 [INSPIRE].

  6. [6]

    F. Brummer and W. Buchmüller, Light Higgsinos as Heralds of Higher-Dimensional Unification, JHEP 07 (2011) 010 [arXiv:1105.0802] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    H. Baer, V. Barger and P. Huang, Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider, JHEP 11 (2011) 031 [arXiv:1107.5581] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    S. Weinberg, Cosmological Constraints on the Scale of Supersymmetry Breaking, Phys. Rev. Lett. 48 (1982) 1303 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    J.R. Ellis, D.V. Nanopoulos and S. Sarkar, The Cosmology of Decaying Gravitinos, Nucl. Phys. B 259 (1985) 175 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    M. Kawasaki, K. Kohri and T. Moroi, Hadronic decay of late - decaying particles and Big-Bang Nucleosynthesis, Phys. Lett. B 625 (2005) 7 [astro-ph/0402490] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336] [hep-ph/0012052] [INSPIRE].

  14. [14]

    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    S. Davidson and A. Ibarra, A Lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0401240] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  17. [17]

    W. Buchmüller, R. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    M. Kawasaki and T. Moroi, Gravitino production in the inflationary universe and the effects on big bang nucleosynthesis, Prog. Theor. Phys. 93 (1995) 879 [hep-ph/9403364] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino Dark Matter in R-Parity Breaking Vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    W. Buchmüller, M. Endo and T. Shindou, Superparticle Mass Window from Leptogenesis and Decaying Gravitino Dark Matter, JHEP 11 (2008) 079 [arXiv:0809.4667] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    S. Bobrovskyi, W. Buchmüller, J. Hajer and J. Schmidt, Broken R-Parity in the Sky and at the LHC, JHEP 10 (2010) 061 [arXiv:1007.5007] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    K. Ishiwata, T. Ito and T. Moroi, Long-Lived Unstable Superparticles at the LHC, Phys. Lett. B 669 (2008) 28 [arXiv:0807.0975] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    S. Asai, K. Hamaguchi and S. Shirai, Measuring lifetimes of long-lived charged massive particles stopped in LHC detectors, Phys. Rev. Lett. 103 (2009) 141803 [arXiv:0902.3754] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    P. Meade, M. Reece and D. Shih, Long-Lived Neutralino NLSPs, JHEP 10 (2010) 067 [arXiv:1006.4575] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    S. Bobrovskyi, W. Buchmüller, J. Hajer and J. Schmidt, Quasi-stable neutralinos at the LHC, JHEP 09 (2011) 119 [arXiv:1107.0926] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    M. Hirsch, W. Porod and D. Restrepo, Collider signals of gravitino dark matter in bilinearly broken R-parity, JHEP 03 (2005) 062 [hep-ph/0503059] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    P. Ghosh, D.E. Lopez-Fogliani, V.A. Mitsou, C. Muñoz and R.R. de Austri, Displaced multileptons at the LHC - probing a 125 GeV new boson in μνSSM, arXiv:1211.3177 [INSPIRE].

  28. [28]

    P.W. Graham, D.E. Kaplan, S. Rajendran and P. Saraswat, Displaced Supersymmetry, JHEP 07 (2012) 149 [arXiv:1204.6038] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    B. Allanach, A. Dedes and H. Dreiner, R parity violating minimal supergravity model, Phys. Rev. D 69 (2004) 115002 [Erratum ibid. D 72 (2005) 079902] [hep-ph/0309196] [INSPIRE].

  31. [31]

    S. Bobrovskyi, Gravitinos and hidden supersymmetry at the LHC, Ph.D. Thesis, University of Hamburg, Germany, DESY-THESIS-2012-032 (2012).

  32. [32]

    F. Takayama and M. Yamaguchi, Gravitino dark matter without R-parity, Phys. Lett. B 485 (2000) 388 [hep-ph/0005214] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    B. Mukhopadhyaya, S. Roy and F. Vissani, Correlation between neutrino oscillations and collider signals of supersymmetry in an R-parity violating model, Phys. Lett. B 443 (1998) 191 [hep-ph/9808265] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    B.A. Campbell, S. Davidson, J.R. Ellis and K.A. Olive, Cosmological baryon asymmetry constraints on extensions of the standard model, Phys. Lett. B 256 (1991) 484.

    ADS  Article  Google Scholar 

  35. [35]

    W. Fischler, G. Giudice, R. Leigh and S. Paban, Constraints on the baryogenesis scale from neutrino masses, Phys. Lett. B 258 (1991) 45 [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    H.K. Dreiner and G.G. Ross, Sphaleron erasure of primordial baryogenesis, Nucl. Phys. B 410 (1993) 188 [hep-ph/9207221] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    M. Endo, K. Hamaguchi and S. Iwamoto, Lepton Flavor Violation and Cosmological Constraints on R-parity Violation, JCAP 02 (2010) 032 [arXiv:0912.0585] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    J.L. Feng, S.-f. Su and F. Takayama, SuperWIMP gravitino dark matter from slepton and sneutrino decays, Phys. Rev. D 70 (2004) 063514 [hep-ph/0404198] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    F.D. Steffen, Gravitino dark matter and cosmological constraints, JCAP 09 (2006) 001 [hep-ph/0605306] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    M. Bolz, Thermal production of gravitinos, Ph.D. Thesis, University of Hamburg, Germany, DESY-THESIS-2000-013 (2000) [INSPIRE]

  41. [41]

    F. Brummer and W. Buchmüller, The Fermi scale as a focus point of high-scale gauge mediation, JHEP 05 (2012) 006 [arXiv:1201.4338] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    W. Buchmüller, K. Schmitz and G. Vertongen, Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays, Nucl. Phys. B 851 (2011) 481 [arXiv:1104.2750] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    W. Buchmüller, V. Domcke and K. Schmitz, Spontaneous B-L Breaking as the Origin of the Hot Early Universe, Nucl. Phys. B 862 (2012) 587 [arXiv:1202.6679] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    G. Vertongen and C. Weniger, Hunting Dark Matter Gamma-Ray Lines with the Fermi LAT, JCAP 05 (2011) 027 [arXiv:1101.2610] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    LAT collaboration, M. Ackermann et al., Fermi LAT Search for Dark Matter in Gamma-ray Lines and the Inclusive Photon Spectrum, Phys. Rev. D 86 (2012) 022002 [arXiv:1205.2739] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    M. Cirelli, E. Moulin, P. Panci, P.D. Serpico and A. Viana, Gamma ray constraints on Decaying Dark Matter, Phys. Rev. D 86 (2012) 083506 [arXiv:1205.5283] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [INSPIRE].

  48. [48]

    CMS collaboration, CMS physics: Technical design report CERN-LHCC-2005-023.

  49. [49]

    ATLAS collaboration, Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 718 (2013) 879 [arXiv:1208.2884] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS detector, Phys. Lett. B 718 (2013) 841 [arXiv:1208.3144] [INSPIRE].

    ADS  Google Scholar 

  51. [51]

    CMS collaboration, Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 11 (2012) 147 [arXiv:1209.6620] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    ATLAS collaboration, Search for Supersymmetry in events with four or more leptons in 13 f b−1 pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2012-153 (2012).

  53. [53]

    ATLAS collaboration, Searches for heavy long-lived sleptons and R-Hadrons with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1211.1597 [INSPIRE].

  54. [54]

    ATLAS collaboration, Search for long-lived, heavy particles in final states with a muon and multi-track displaced vertex in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, arXiv:1210.7451 [INSPIRE].

  55. [55]

    ATLAS collaboration, Search for pair production of massive particles decaying into three quarks with the ATLAS detector in \( \sqrt{s}=7 \) TeV pp collisions at the LHC, JHEP 12 (2012) 086 [arXiv:1210.4813] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    ATLAS collaboration, Search for R-parity-violating supersymmetry in events with four or more leptons in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS detector, JHEP 12 (2012) 124 [arXiv:1210.4457] [INSPIRE].

    ADS  Google Scholar 

  57. [57]

    ATLAS collaboration, Search for lepton flavour violation in the emu continuum with the ATLAS detector in \( \sqrt{s}=7 \) TeV pp collisions at the LHC, Eur. Phys. J. C 72 (2012) 2040 [arXiv:1205.0725] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    ATLAS collaboration, Search for a heavy neutral particle decaying into an electron and a muon using 1 fb −1 of ATLAS data, Eur. Phys. J. C 71 (2011) 1809 [arXiv:1109.3089] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    CMS collaboration, Search for RPV supersymmetry with three or more leptons and b-tags, CMS-PAS-SUS-12-027.

  60. [60]

    ATLAS collaboration, Search for a light Higgs boson decaying to long-lived weakly-interacting particles in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 251801 [arXiv:1203.1303] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    ATLAS collaboration, Search for displaced muonic lepton jets from light Higgs boson decay in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, arXiv:1210.0435 [INSPIRE].

  62. [62]

    CMS collaboration, Search for new physics with long-lived particles decaying to photons and missing energy in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 11 (2012) 172 [arXiv:1207.0627] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    CMS collaboration, Search in leptonic channels for heavy resonances decaying to long-lived neutral particles, arXiv:1211.2472 [INSPIRE].

  64. [64]

    ALEPH, DELPHI, L3 and OPAL experiments collaborations, LEP2 SUSY Working Group, Combined lep chargino results, up to 208 GeV, http://lepsusy.web.cern.ch/lepsusy/www/inos moriond01/charginos pub.html.

  65. [65]

    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    LHCb collaboration, First evidence for the decay \( B_s^0\to {\mu^{+}}{\mu^{-}} \), Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].

    Article  Google Scholar 

  67. [67]

    W. Altmannshofer, M. Carena, N. Shah and F. Yu, Indirect Probes of the MSSM after the Higgs Discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production and decay at hadron colliders, JHEP 08 (2009) 049 [arXiv:0907.3090] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    J.M. Campbell, R.K. Ellis and D.L. Rainwater, Next-to-leading order QCD predictions for W + 2 jet and Z + 2 jet production at the CERN LHC, Phys. Rev. D 68 (2003) 094021 [hep-ph/0308195] [INSPIRE].

    ADS  Google Scholar 

  70. [70]

    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    J. Alwall et al., MadGraph/MadEvent v4: the New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  75. [75]

    M. Muhlleitner, SDECAY: a Fortran code for SUSY particle decays in the MSSM, Acta Phys. Polon. B 35 (2004) 2753 [hep-ph/0409200] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  77. [77]

    ATLAS collaboration, Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].

  78. [78]

    I. Hinchliffe, F. Paige, M. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [INSPIRE].

    ADS  Google Scholar 

  79. [79]

    B. Allanach, C. Lester, M.A. Parker and B. Webber, Measuring sparticle masses in nonuniversal string inspired models at the LHC, JHEP 09 (2000) 004 [hep-ph/0007009] [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    CMS collaboration, Discovery potential and measurement of a dilepton mass edge in SUSY events at \( \sqrt{s}=10 \) TeV, CMS-PAS-SUS-09-002.

  81. [81]

    M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Status of the Inert Doublet Model and the Role of multileptons at the LHC, Phys. Rev. D 86 (2012) 075019 [arXiv:1206.6316] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Hajer.

Additional information

ArXiv ePrint: 1211.5584

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Bobrovskyi, S., Hajer, J. & Rydbeck, S. Long-lived higgsinos as probes of gravitino dark matter at the LHC. J. High Energ. Phys. 2013, 133 (2013). https://doi.org/10.1007/JHEP02(2013)133

Download citation

Keywords

  • Supersymmetry Phenomenology