Journal of High Energy Physics

, 2013:126 | Cite as


  • Asimina Arvanitaki
  • Nathaniel Craig
  • Savas Dimopoulos
  • Giovanni Villadoro
Open Access


The lack of evidence for new physics beyond the standard model at the LHC points to a paucity of new particles near the weak scale. This suggests that the weak scale is tuned and that supersymmetry, if present at all, is realized at higher energies. The measured Higgs mass constrains the scalar sparticles to be below 105 TeV, while gauge coupling unification favors Higgsinos below 100 TeV. Nevertheless, in many models gaugino masses are suppressed and remain within reach of the LHC. Tuning the weak scale and the renormalization group evolution of the scalar masses constrain Split model building. Due to the small gaugino masses, either the squarks or the up-higgs often run tachyonic; in the latter case, successful electroweak breaking requires heavy higgsinos near the scalar sparticles. We discuss the consequences of tuning the weak scale and the phenomenology of several models of Split supersymmetry including anomaly mediation, U(1) B−L mediation, and Split gauge mediation.


Beyond Standard Model Supersymmetric Standard Model Supersymmetric Effective Theories 


  1. [1]
    S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the scale of unification, Phys. Rev. D 24 (1981) 1681 [INSPIRE].ADSGoogle Scholar
  2. [2]
    S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 5.8 fb −1 of \( \sqrt{s}=8 \) TeV proton-proton collision data, ATLAS-CONF-2012-109 (2012).
  4. [4]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S. Dimopoulos and G.F. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    ATLAS collaboration, Search for light scalar top quark pair production in final states with two leptons with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Eur. Phys. J. C 72 (2012) 2237 [arXiv:1208.4305] [INSPIRE].ADSGoogle Scholar
  8. [8]
    ATLAS collaboration, Search for light top squark pair production in final states with leptons and b jets with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, arXiv:1209.2102 [INSPIRE].
  9. [9]
    ATLAS collaboration, Search for a supersymmetric partner to the top quark in final states with jets and missing transverse momentum at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 109 (2012) 211802 [arXiv:1208.1447] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=7 \) TeV pp collisions using 4.7 fb −1 of ATLAS data, Phys. Rev. Lett. 109 (2012) 211803 [arXiv:1208.2590] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    ATLAS collaboration, Search for a heavy top-quark partner in final states with two leptons with the ATLAS detector at the LHC, JHEP 11 (2012) 094 [arXiv:1209.4186] [INSPIRE].ADSGoogle Scholar
  12. [12]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Ibarra, Tachyonic squarks in split supersymmetry, Phys. Lett. B 620 (2005) 164 [hep-ph/0503160] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Cheung and C.-W. Chiang, Splitting split supersymmetry, Phys. Rev. D 71 (2005) 095003 [hep-ph/0501265] [INSPIRE].ADSGoogle Scholar
  18. [18]
    N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J.L. Feng, T. Moroi, L. Randall, M. Strassler and S.-f. Su, Discovering supersymmetry at the Tevatron in wino LSP scenarios, Phys. Rev. Lett. 83 (1999) 1731 [hep-ph/9904250] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    ATLAS collaboration, Search for anomaly-mediated supersymmetry breaking with the ATLAS detector based on a disappearing-track signature in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 72 (2012) 1993 [arXiv:1202.4847] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Dimopoulos, N. Tetradis, R. Esmailzadeh and L.J. Hall, TeV dark matter, Nucl. Phys. B 349 (1991) 714 [Erratum ibid. B 357 (1991) 308] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Gherghetta, G.F. Giudice and J.D. Wells, Phenomenological consequences of supersymmetry with anomaly induced masses, Nucl. Phys. B 559 (1999) 27 [hep-ph/9904378] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, JHEP 06 (2012) 046 [arXiv:1203.1622] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G.R. Dvali, G.F. Giudice and A. Pomarol, The μ-problem in theories with gauge mediated supersymmetry breaking, Nucl. Phys. B 478 (1996) 31 [hep-ph/9603238] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. De Simone, R. Franceschini, G.F. Giudice, D. Pappadopulo and R. Rattazzi, Lopsided gauge mediation, JHEP 05 (2011) 112 [arXiv:1103.6033] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops from analytic continuation into superspace, Phys. Rev. D 58 (1998) 115005 [hep-ph/9803290] [INSPIRE].ADSGoogle Scholar
  29. [29]
    T. Cohen, A. Hook and B. Wecht, Comments on gaugino screening, Phys. Rev. D 85 (2012) 115004 [arXiv:1112.1699] [INSPIRE].ADSGoogle Scholar
  30. [30]
    G.F. Giudice, H.D. Kim and R. Rattazzi, Natural μ and Bμ in gauge mediation, Phys. Lett. B 660 (2008) 545 [arXiv:0711.4448] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Buican, P. Meade, N. Seiberg and D. Shih, Exploring general gauge mediation, JHEP 03 (2009) 016 [arXiv:0812.3668] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    C. Cheung, A.L. Fitzpatrick and D. Shih, (Extra)ordinary gauge mediation, JHEP 07 (2008) 054 [arXiv:0710.3585] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    Z. Komargodski and D. Shih, Notes on SUSY and R-symmetry breaking in Wess-Zumino models, JHEP 04 (2009) 093 [arXiv:0902.0030] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    L. O’Raifeartaigh, Spontaneous symmetry breaking for chiral scalar superfields, Nucl. Phys. B 96 (1975) 331 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    K.A. Intriligator and S.D. Thomas, Dynamical supersymmetry breaking on quantum moduli spaces, Nucl. Phys. B 473 (1996) 121 [hep-th/9603158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    K.-I. Izawa and T. Yanagida, Dynamical supersymmetry breaking in vector-like gauge theories, Prog. Theor. Phys. 95 (1996) 829 [hep-th/9602180] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P. Gambino, G.F. Giudice and P. Slavich, Gluino decays in split supersymmetry, Nucl. Phys. B 726 (2005) 35 [hep-ph/0506214] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.L. Hewett, B. Lillie, M. Masip and T.G. Rizzo, Signatures of long-lived gluinos in split supersymmetry, JHEP 09 (2004) 070 [hep-ph/0408248] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Arvanitaki, S. Dimopoulos, A. Pierce, S. Rajendran and J.G. Wacker, Stopping gluinos, Phys. Rev. D 76 (2007) 055007 [hep-ph/0506242] [INSPIRE].ADSGoogle Scholar
  41. [41]
    CMS collaboration, Search for heavy long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 713 (2012) 408 [arXiv:1205.0272] [INSPIRE].ADSGoogle Scholar
  42. [42]
    CMS collaboration, Search for stopped long-lived particles produced in pp collisions at \( \sqrt{s}=7 \) TeV,JHEP 08 (2012) 026 [arXiv:1207.0106] [INSPIRE].ADSGoogle Scholar
  43. [43]
    ATLAS collaboration, Search for decays of stopped, long-lived particles from 7 TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 72 (2012) 1965 [arXiv:1201.5595] [INSPIRE].ADSGoogle Scholar
  44. [44]
    ATLAS collaboration, Searches for heavy long-lived sleptons and R-hadrons with the ATLAS detector in pp collisions at s = 7 TeV, ATLAS-CONF-2012-075 (2012).
  45. [45]
    K. Howe and P. Saraswat, Excess Higgs production in neutralino decays, JHEP 10 (2012) 065 [arXiv:1208.1542] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M.R. Buckley, L. Randall and B. Shuve, LHC searches for non-chiral weakly charged multiplets, JHEP 05 (2011) 097 [arXiv:0909.4549] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    N. Arkani-Hamed, S. Dimopoulos and S. Kachru, Predictive landscapes and new physics at a TeV, hep-th/0501082 [INSPIRE].
  48. [48]
    R. Mahbubani and L. Senatore, The minimal model for dark matter and unification, Phys. Rev. D 73 (2006) 043510 [hep-ph/0510064] [INSPIRE].ADSGoogle Scholar
  49. [49]
    S.D. Thomas and J.D. Wells, Phenomenology of massive vectorlike doublet leptons, Phys. Rev. Lett. 81 (1998) 34 [hep-ph/9804359] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Asimina Arvanitaki
    • 1
  • Nathaniel Craig
    • 2
    • 3
  • Savas Dimopoulos
    • 1
  • Giovanni Villadoro
    • 4
  1. 1.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A
  2. 2.Department of PhysicsRutgers UniversityPiscatawayU.S.A
  3. 3.School of Natural Sciences, Institute for Advanced StudyPrincetonU.S.A
  4. 4.SLAC, Stanford UniversityMenlo ParkU.S.A

Personalised recommendations