Advertisement

Journal of High Energy Physics

, 2013:118 | Cite as

Accidental stability of dark matter

  • L. Lavoura
  • S. MorisiEmail author
  • J. W. F. Valle
Article

Abstract

We propose that dark matter is stable as a consequence of an accidental \( {{\mathbb{Z}}_2} \) that results from a flavour symmetry group which is the double-cover group of the symmetry group of one of the regular geometric solids. Although model-dependent, the phenomenology resembles that of a generic “inert Higgs” dark matter scheme.

Keywords

Beyond Standard Model Neutrino Physics Discrete and Finite Symmetries 

References

  1. [1]
    A. McDonald, Neutrino oscillations measurements: past and present, talk at the XIV International Workshop on Neutrino Telescopes, March 15–18, Venice, Italy (2011).Google Scholar
  2. [2]
    M. Maltoni, T. Schwetz, M.A. Tórtola and J.W.F. Valle, Status of global fits to neutrino oscillations, New J. Phys. 6 (2004) 122 [hep-ph/0405172] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [INSPIRE].ADSGoogle Scholar
  5. [5]
    K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Hirsch et al., Proceedings of the first workshop on flavor symmetries and consequences in accelerators and cosmology (FLASY2011), arXiv:1201.5525 [INSPIRE].
  8. [8]
    H. Ishimori et al., Non-abelian discrete symmetries in particle physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Drees and M.M. Nojiri, The neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].ADSGoogle Scholar
  10. [10]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C. Boehm, Y. Farzan, T. Hambye, S. Palomares-Ruiz and S. Pascoli, Is it possible to explain neutrino masses with scalar dark matter?, Phys. Rev. D 77 (2008) 043516 [hep-ph/0612228] [INSPIRE].ADSGoogle Scholar
  13. [13]
    N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].ADSGoogle Scholar
  14. [14]
    L. Lopez Honorez and C.E. Yaguna, A new viable region of the inert doublet model, JCAP 01 (2011) 002 [arXiv:1011.1411] [INSPIRE].ADSGoogle Scholar
  15. [15]
    P.-H. Gu and U. Sarkar, Radiative seesaw in left-right symmetric model, Phys. Rev. D 78 (2008) 073012 [arXiv:0807.0270] [INSPIRE].ADSGoogle Scholar
  16. [16]
    Y. Farzan, A minimal model linking two great mysteries: neutrino mass and dark matter, Phys. Rev. D 80 (2009) 073009 [arXiv:0908.3729] [INSPIRE].ADSGoogle Scholar
  17. [17]
    E. Ma and D. Suematsu, Fermion triplet dark matter and radiative neutrino mass, Mod. Phys. Lett. A 24 (2009) 583 [arXiv:0809.0942] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    E. Ma, Radiative inverse seesaw mechanism for nonzero neutrino mass, Phys. Rev. D 80 (2009) 013013 [arXiv:0904.4450] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Y. Farzan and E. Ma, Dirac neutrino mass generation from dark matter, Phys. Rev. D 86 (2012) 033007 [arXiv:1204.4890] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M.K. Parida, Radiative seesaw in SO(10) with dark matter, Phys. Lett. B 704 (2011) 206 [arXiv:1106.4137] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. Suematsu and T. Toma, Dark matter in the supersymmetric radiative seesaw model with an anomalous U(1) symmetry, Nucl. Phys. B 847 (2011) 567 [arXiv:1011.2839] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Kanemura, T. Nabeshima and H. Sugiyama, TeV-scale seesaw with loop-induced Dirac mass term and dark matter from U(1)B−L gauge symmetry breaking, Phys. Rev. D 85 (2012) 033004 [arXiv:1111.0599] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Hirsch, S. Morisi, E. Peinado and J.W.F. Valle, Discrete dark matter, Phys. Rev. D 82 (2010) 116003 [arXiv:1007.0871] [INSPIRE].ADSGoogle Scholar
  24. [24]
    D. Meloni, S. Morisi and E. Peinado, Stability of dark matter from the D 4 × Z 2 flavor group, Phys. Lett. B 703 (2011) 281 [arXiv:1104.0178] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Boucenna et al., Phenomenology of dark matter from A 4 flavor symmetry, JHEP 05 (2011) 037 [arXiv:1101.2874] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    D. Meloni, S. Morisi and E. Peinado, Neutrino phenomenology and stable dark matter with A 4, Phys. Lett. B 697 (2011) 339 [arXiv:1011.1371] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    K.M. Parattu and A. Wingerter, Tribimaximal mixing from small groups, Phys. Rev. D 84 (2011) 013011 [arXiv:1012.2842] [INSPIRE].ADSGoogle Scholar
  28. [28]
    G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L.L. Everett and A.J. Stuart, Icosahedral (A 5 ) family symmetry and the golden ratio prediction for solar neutrino mixing, Phys. Rev. D 79 (2009) 085005 [arXiv:0812.1057] [INSPIRE].ADSGoogle Scholar
  31. [31]
    Y. Kajiyama, M. Raidal and A. Strumia, The golden ratio prediction for the solar neutrino mixing, Phys. Rev. D 76 (2007) 117301 [arXiv:0705.4559] [INSPIRE].ADSGoogle Scholar
  32. [32]
    I.d.M. Varzielas and L. Lavoura, Flavour models for TM1 lepton mixing, arXiv:1212.3247 [INSPIRE].
  33. [33]
    F. Bazzocchi and S. Morisi, S 4 as a natural flavor symmetry for lepton mixing, Phys. Rev. D 80 (2009) 096005 [arXiv:0811.0345] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C.S. Lam, Determining horizontal symmetry from neutrino mixing, Phys. Rev. Lett. 101 (2008) 121602 [arXiv:0804.2622] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  36. [36]
    J. Schechter and J.W.F. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev. D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  37. [37]
    J. Barry and W. Rodejohann, Neutrino mass sum-rules in flavor symmetry models, Nucl. Phys. B 842 (2011) 33 [arXiv:1007.5217] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    L. Dorame, D. Meloni, S. Morisi, E. Peinado and J.W.F. Valle, Constraining neutrinoless double beta decay, Nucl. Phys. B 861 (2012) 259 [arXiv:1111.5614] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    RENO collaboration, J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Antusch and V. Maurer, Large neutrino mixing angle \( \theta_{13}^{MNS } \) and quark-lepton mass ratios in unified flavour models, Phys. Rev. D 84 (2011) 117301 [arXiv:1107.3728] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Antusch, C. Gross, V. Maurer and C. Sluka, \( \theta_{13}^{PMNS }={\theta_C}/\sqrt{2} \) from GUTs, Nucl. Phys. B 866 (2013) 255 [arXiv:1205.1051] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    E. Ma and D. Wegman, Nonzero θ13 for neutrino mixing in the context of A 4 symmetry, Phys. Rev. Lett. 107 (2011) 061803 [arXiv:1106.4269] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Hirsch, J. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Phenomenological tests of supersymmetric A 4 family symmetry model of neutrino mass, Phys. Rev. D 69 (2004) 093006 [hep-ph/0312265] [INSPIRE].ADSGoogle Scholar
  46. [46]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].ADSGoogle Scholar
  47. [47]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Status of the inert doublet model and the role of multileptons at the LHC, Phys. Rev. D 86 (2012) 075019 [arXiv:1206.6316] [INSPIRE].ADSGoogle Scholar
  50. [50]
    G. Gil, P. Chankowski and M. Krawczyk, Inert dark matter and strong electroweak phase transition, Phys. Lett. B 717 (2012) 396 [arXiv:1207.0084] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Technical University of Lisbon, CFTP, Instituto Superior TécnicoLisboaPortugal
  2. 2.AHEP Group, Instituto de Física Corpuscular — C.S.I.C./Universitat de València, Edificio de Institutos de PaternaValènciaSpain
  3. 3.Institut für Theoretische Physik und AstrophysikUniversität WürzburgWürzburgGermany

Personalised recommendations