Journal of High Energy Physics

, 2013:116 | Cite as

The anatomy of Z and Z with flavour changing neutral currents in the flavour precision era

  • Andrzej J. Buras
  • Fulvia De Fazio
  • Jennifer Girrbach
Article

Abstract

The simplest extension of the Standard Model (SM) that generally introduces new sources of flavour violation and CP violation as well as right-handed (RH) currents is the addition of a U(1) gauge symmetry to the SM gauge group. If the corresponding heavy gauge boson (Z) mediates FCNC processes in the quark sector at tree-level, these new physics (NP) contributions imply a pattern of deviations from SM expectations for FCNC processes that depends only on the couplings of Z to fermions and on its mass. This implies stringent correlations between ΔF = 2 and ΔF = 1 observables which govern the landscape of the allowed parameter space for Z-models. Anticipating the Flavour Precision Era (FPE) ahead of us we illustrate this by searching for allowed oases in this landscape assuming significantly smaller uncertainties in CKM and hadronic parameters than presently available. To this end we analyze ΔF = 2 observables in \( {K^0}-{{\overline{K}}^0} \) and \( B_{s,d}^0-\overline{B}_{s,d}^0 \) systems and rare K and B decays including both left-handed and right-handed Z-couplings to quarks in various combinations. We identify a number of correlations between various flavour observables that could test and distinguish these different Z scenarios. The important role of bs+ and \( b\to s\nu \overline{\nu} \) transitions in these studies is emphasized. Imposing the existing flavour constraints, a rich pattern of deviations from the SM expectations in Bs,d and K meson systems emerges provided MZ′ ≤ 3 TeV. While for MZ′ ≥ 5 TeV Z effects in rare Bs,d decays are found typically below 10% and hard to measure even in the FPE, \( K\to s\nu \overline{\nu} \) and KL → π0+ decays provide an important portal to scales beyond those explored by the LHC. We apply our formalism to NP scenarios with induced flavour changing neutral Z-couplings to quarks. We find that in the case of Bd and K decays such Z-couplings still allow for sizable departures from the SM. On the other hand in the Bs system, constraints on bs+ transitions basically eliminate NP effects from such couplings.

Keywords

Beyond Standard Model B-Physics CP violation 

References

  1. [1]
    S. Glashow, J. Iliopoulos and L. Maiani, Weak interactions with lepton-hadron symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE].ADSGoogle Scholar
  2. [2]
    A. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A.J. Buras, Minimal flavor violation, Acta Phys. Polon. B 34 (2003) 5615 [hep-ph/0310208] [INSPIRE].ADSGoogle Scholar
  4. [4]
    M. Blanke, A.J. Buras, D. Guadagnoli and C. Tarantino, Minimal flavour violation waiting for precise measurements of ΔM s , S ψϕ , \( \mathrm{A}_{\mathrm{SL}}^s \) , |V ub|, γ and \( B_{s,d}^0\to {\mu^{+}}{\mu^{-}} \), JHEP 10 (2006) 003 [hep-ph/0604057] [INSPIRE].ADSGoogle Scholar
  5. [5]
    G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Isidori, Y. Nir and G. Perez, Flavor physics constraints for physics beyond the standard model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A.J. Buras and J. Girrbach, BSM models facing the recent LHCb data: a first look, Acta Phys. Polon. B 43 (2012) 1427 [arXiv:1204.5064] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    P. Langacker and M. Plümacher, Flavor changing effects in theories with a heavy Z boson with family nonuniversal couplings, Phys. Rev. D 62 (2000) 013006 [hep-ph/0001204] [INSPIRE].ADSGoogle Scholar
  9. [9]
    G. Buchalla, G. Hiller and G. Isidori, Phenomenology of nonstandard Z couplings in exclusive semileptonic bs transitions, Phys. Rev. D 63 (2000) 014015 [hep-ph/0006136] [INSPIRE].ADSGoogle Scholar
  10. [10]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    V. Barger, C.-W. Chiang, P. Langacker and H.-S. Lee, Z mediated flavor changing neutral currents in B meson decays, Phys. Lett. B 580 (2004) 186 [hep-ph/0310073] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V. Barger, C.-W. Chiang, J. Jiang and P. Langacker, \( {B_s}-{{\overline{B}}_s} \) mixing in Z models with flavor-changing neutral currents, Phys. Lett. B 596 (2004) 229 [hep-ph/0405108] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C.-W. Chiang, N. Deshpande and J. Jiang, Flavor changing effects in family nonuniversal Z models,JHEP 08 (2006) 075 [hep-ph/0606122] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Baek, J.H. Jeon and C. Kim, \( B_s^0-\overline{B}_s^0 \) mixing in leptophobic Z model, Phys. Lett. B 641 (2006) 183 [hep-ph/0607113] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K. Cheung, C.-W. Chiang, N. Deshpande and J. Jiang, Constraints on flavor-changing Z models by B s mixing, Z production and B sμ + μ , Phys. Lett. B 652 (2007) 285 [hep-ph/0604223] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    X.-G. He and G. Valencia, \( B_s^0-\overline{B}_s^0 \) mixing constraints on FCNC and a non-universal Z , Phys. Rev. D 74 (2006) 013011 [hep-ph/0605202] [INSPIRE].ADSGoogle Scholar
  17. [17]
    V. Barger et al., bs transitions in family-dependent U(1) models, JHEP 12 (2009) 048 [arXiv:0906.3745] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. del Aguila, J. de Blas, P. Langacker and M. Pérez-Victoria, Impact of extra particles on indirect Z limits, Phys. Rev. D 84 (2011) 015015 [arXiv:1104.5512] [INSPIRE].ADSGoogle Scholar
  19. [19]
    X.-Q. Li, Y.-M. Li, G.-R. Lu and F. Su, \( B_s^0-\overline{B}_s^0 \) mixing in a family non-universal Z model revisited, JHEP 05 (2012) 049 [arXiv:1204.5250] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Q. Chang, X.-Q. Li and Y.-D. Yang, BK l + l , Kl + l decays in a family non-universal Z model,JHEP 04 (2010) 052 [arXiv:1002.2758] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Q. Chang, X.-Q. Li and Y.-D. Yang, Family non-universal Z effects on \( {{\overline{B}}_q}-{B_q} \) mixing, BX s μ + μ and B sμ + μ decays,JHEP 02 (2010) 082 [arXiv:0907.4408] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Langacker, The physics of heavy Z gauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and minimal flavour violation in supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Barbieri, P. Campli, G. Isidori, F. Sala and D.M. Straub, B-decay CP-asymmetries in SUSY with a U(2)3 flavour symmetry, Eur. Phys. J. C 71 (2011) 1812 [arXiv:1108.5125] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Less minimal flavour violation, JHEP 10 (2012) 040 [arXiv:1206.1327] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Crivellin, L. Hofer and U. Nierste, The MSSM with a softly broken U(2)3 flavor symmetry, PoS (EPS-HEP2011) 145 [arXiv:1111.0246] [INSPIRE].
  28. [28]
    A. Crivellin, L. Hofer, U. Nierste and D. Scherer, Phenomenological consequences of radiative flavor violation in the MSSM, Phys. Rev. D 84 (2011) 035030 [arXiv:1105.2818] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Crivellin and U. Nierste, Supersymmetric renormalisation of the CKM matrix and new constraints on the squark mass matrices, Phys. Rev. D 79 (2009) 035018 [arXiv:0810.1613] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A.J. Buras and J. Girrbach, On the correlations between flavour observables in minimal U(2)3 models, JHEP 01 (2013) 007 [arXiv:1206.3878] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Blanke et al., Rare and CP-violating K and B decays in the littlest Higgs model with T parity, JHEP 01 (2007) 066 [hep-ph/0610298] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Blanke, A.J. Buras, B. Duling, S. Recksiegel and C. Tarantino, FCNC processes in the littlest Higgs model with T-parity: a 2009 look, Acta Phys. Polon. B 41 (2010) 657 [arXiv:0906.5454] [INSPIRE].Google Scholar
  33. [33]
    M. Blanke, A.J. Buras, B. Duling, K. Gemmler and S. Gori, Rare K and B decays in a warped extra dimension with custodial protection, JHEP 03 (2009) 108 [arXiv:0812.3803] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Blanke, Insights from the interplay of \( K\to \pi \nu \overline{\nu} \) and ϵ K on the new physics flavour structure, Acta Phys. Polon. B 41 (2010) 127 [arXiv:0904.2528] [INSPIRE].Google Scholar
  35. [35]
    A.J. Buras, F. De Fazio, J. Girrbach and M.V. Carlucci, The anatomy of quark flavour observables in 331 models in the flavour precision era, JHEP 02 (2013) 023 [arXiv:1211.1237] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    W. Altmannshofer and D.M. Straub, Cornering new physics in bs transitions, JHEP 08 (2012) 121 [arXiv:1206.0273] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    F. Beaujean, C. Bobeth, D. van Dyk and C. Wacker, Bayesian fit of exclusive \( b\to s\overline{\ell}\ell \) decays: the standard model operator basis, JHEP 08 (2012) 030 [arXiv:1205.1838] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and phenomenology of FCNC and CPV effects in SUSY theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    W. Altmannshofer, P. Paradisi and D.M. Straub, Model-independent constraints on new physics in bs transitions, JHEP 04 (2012) 008 [arXiv:1111.1257] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Blanke, A.J. Buras, K. Gemmler and T. Heidsieck, ΔF = 2 observables and BX q γ decays in the left-right model: Higgs particles striking back, JHEP 03 (2012) 024 [arXiv:1111.5014] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K. De Bruyn et al., Branching ratio measurements of B s decays, Phys. Rev. D 86 (2012) 014027 [arXiv:1204.1735] [INSPIRE].ADSGoogle Scholar
  42. [42]
    K. De Bruyn et al., Probing new physics via the \( B_s^0\to {\mu^{+}}{\mu^{-}} \) effective lifetime, Phys. Rev. Lett. 109 (2012) 041801 [arXiv:1204.1737] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A.J. Buras and L. Silvestrini, Upper bounds on \( K\to \pi \nu \overline{\nu} \) and K L → π0 e + e from ε /ε and K Lμ + μ , Nucl. Phys. B 546 (1999) 299 [hep-ph/9811471] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Buras, G. Colangelo, G. Isidori, A. Romanino and L. Silvestrini, Connections between ε′/ε and rare kaon decays in supersymmetry, Nucl. Phys. B 566 (2000) 3 [hep-ph/9908371] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Blanke, A.J. Buras, S. Recksiegel, C. Tarantino and S. Uhlig, Correlations between ε /ε and rare K decays in the littlest Higgs model with T-parity, JHEP 06 (2007) 082 [arXiv:0704.3329] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A.J. Buras, S. Jager and J. Urban, Master formulae for ΔF = 2 NLO QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A.J. Buras and J. Girrbach, Complete NLO QCD corrections for tree level ΔF = 2 FCNC processes, JHEP 03 (2012) 052 [arXiv:1201.1302] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    RBC and UKQCD collaboration, P. Boyle, N. Garron and R. Hudspith, Neutral kaon mixing beyond the standard model with n f = 2 + 1 chiral fermions, Phys. Rev. D 86 (2012) 054028 [arXiv:1206.5737] [INSPIRE].ADSGoogle Scholar
  49. [49]
    V. Bertone et al., Kaon mixing beyond the SM from n f = 2 tmQCD and model independent constraints from the UTA, arXiv:1207.1287 [INSPIRE].
  50. [50]
    C. Bouchard et al., Neutral B mixing from 2 + 1 flavor lattice-QCD: the standard model and beyond, PoS (LATTICE 2011) 274 [arXiv:1112.5642] [INSPIRE].
  51. [51]
    G. Buchalla and A.J. Buras, The rare decays \( K\to \pi \nu \overline{\nu} \) , \( B\to X\nu \overline{\nu} \) and B → ℓ+ : an update, Nucl. Phys. B 548 (1999) 309 [hep-ph/9901288] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Misiak and J. Urban, QCD corrections to FCNC decays mediated by Z penguins and W boxes, Phys. Lett. B 451 (1999) 161 [hep-ph/9901278] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Blanke et al., Particle-antiparticle mixing, εK , ΔΓq , \( A_{\mathrm{SL}}^q \) , A CP(B d → ψK S ), A CP(B s → ψϕ) and BX s,dγ in the littlest Higgs model with T-parity, JHEP 12 (2006) 003 [hep-ph/0605214] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. Herrlich and U. Nierste, Enhancement of the K L -K S mass difference by short distance QCD corrections beyond leading logarithms, Nucl. Phys. B 419 (1994) 292 [hep-ph/9310311] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Herrlich and U. Nierste, Indirect CP-violation in the neutral kaon system beyond leading logarithms, Phys. Rev. D 52 (1995) 6505 [hep-ph/9507262] [INSPIRE].ADSGoogle Scholar
  56. [56]
    S. Herrlich and U. Nierste, The completeS| = 2 Hamiltonian in the next-to-leading order, Nucl. Phys. B 476 (1996) 27 [hep-ph/9604330] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A.J. Buras, M. Jamin and P.H. Weisz, Leading and next-to-leading QCD corrections to ε parameter and \( {B^0}-{{\overline{B}}^0} \) mixing in the presence of a heavy top quark, Nucl. Phys. B 347 (1990) 491 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Urban, F. Krauss, U. Jentschura and G. Soff, Next-to-leading order QCD corrections for the \( {B^0}-{{\overline{B}}^0} \) mixing with an extended Higgs sector, Nucl. Phys. B 523 (1998) 40 [hep-ph/9710245] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Brod and M. Gorbahn, ϵK at next-to-next-to-leading order: the charm-top-quark contribution, Phys. Rev. D 82 (2010) 094026 [arXiv:1007.0684] [INSPIRE].ADSGoogle Scholar
  60. [60]
    J. Brod and M. Gorbahn, Next-to-next-to-leading-order charm-quark contribution to the CP-violation parameter ϵK and ΔM K , Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A.J. Buras and D. Guadagnoli, Correlations among new CP-violating effects in ΔF = 2 observables, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887] [INSPIRE].ADSGoogle Scholar
  62. [62]
    A.J. Buras, D. Guadagnoli and G. Isidori, On ϵK beyond lowest order in the operator product expansion, Phys. Lett. B 688 (2010) 309 [arXiv:1002.3612] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Descotes-Genon, J. Matias and J. Virto, An analysis of B d,s mixing angles in presence of new physics and an update of \( Bs\to K_0^{*}\overline{K}_0^{*} \), Phys. Rev. D 85 (2012) 034010 [arXiv:1111.4882] [INSPIRE].ADSGoogle Scholar
  64. [64]
    R. Fleischer, On branching ratios of B s decays and the search for new physics in \( B_s^0\to {\mu^{+}}{\mu^{-}} \), arXiv:1208.2843 [INSPIRE].
  65. [65]
    LHCb collaboration, Strong constraints on the rare decays B sμ + μ and B 0μ + μ , Phys. Rev. Lett. 108 (2012) 231801 [arXiv:1203.4493] [INSPIRE].CrossRefGoogle Scholar
  66. [66]
    LHCb collaboration, First evidence for the decay B sμ + μ , Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].CrossRefGoogle Scholar
  67. [67]
    A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the standard model prediction for BR(B s,dμ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A.J. Buras, R. Fleischer, S. Recksiegel and F. Schwab, Anatomy of prominent B and K decays and signatures of CP-violating new physics in the electroweak penguin sector, Nucl. Phys. B 697 (2004) 133 [hep-ph/0402112] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M. Gorbahn and U. Haisch, Charm quark contribution to K Lμ + μ at next-to-next-to-leading, Phys. Rev. Lett. 97 (2006) 122002 [hep-ph/0605203] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    G. Isidori and R. Unterdorfer, On the short distance constraints from K L,Sμ + μ , JHEP 01 (2004) 009 [hep-ph/0311084] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A.J. Buras, F. Schwab and S. Uhlig, Waiting for precise measurements of \( {K^{+}}\to {\pi^{+}}\nu \overline{\nu} \) and \( {K_L}\to {\pi^0}\nu \overline{\nu} \), Rev. Mod. Phys. 80 (2008) 965 [hep-ph/0405132] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    G. Isidori, Flavor physics with light quarks and leptons, eConf C 060409 (2006) 035 [hep-ph/0606047] [INSPIRE].Google Scholar
  73. [73]
    C. Smith, Theory review on rare K decays: standard model and beyond, hep-ph/0608343 [INSPIRE].
  74. [74]
    F. Mescia and C. Smith, Improved estimates of rare K decay matrix-elements from K ℓ3 decays, Phys. Rev. D 76 (2007) 034017 [arXiv:0705.2025] [INSPIRE].ADSGoogle Scholar
  75. [75]
    A. Buras, M. Gorbahn, U. Haisch and U. Nierste, The rare decay \( {K^{+}}\to {\pi^{+}}\nu \overline{\nu} \) at the next-to-next-to-leading order in QCD, Phys. Rev. Lett. 95 (2005) 261805 [hep-ph/0508165] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    A.J. Buras, M. Gorbahn, U. Haisch and U. Nierste, Charm quark contribution to \( {K^{+}}\to {\pi^{+}}\nu \overline{\nu} \) at next-to-next-to-leading order,JHEP 11 (2006) 002 [Erratum ibid. 11 (2012) 167] [hep-ph/0603079] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    J. Brod and M. Gorbahn, Electroweak corrections to the charm quark contribution to \( {K^{+}}\to {\pi^{+}}\nu \overline{\nu} \), Phys. Rev. D 78 (2008) 034006 [arXiv:0805.4119] [INSPIRE].ADSGoogle Scholar
  78. [78]
    G. Isidori, F. Mescia and C. Smith, Light-quark loops in \( {K^{+}}\to \pi \nu \overline{\nu} \), Nucl. Phys. B 718 (2005) 319 [hep-ph/0503107] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    E949 collaboration, A. Artamonov et al., New measurement of the \( {K^{+}}\to {\pi^{+}}\nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    E391a collaboration, J. Ahn et al., Experimental study of the decay \( K_L^0\to {\pi^0}\nu \overline{\nu} \), Phys. Rev. D 81 (2010) 072004 [arXiv:0911.4789] [INSPIRE].ADSGoogle Scholar
  81. [81]
    J. Brod, M. Gorbahn and E. Stamou, Two-loop electroweak corrections for the \( K\to \pi \nu \overline{nu} \) decays, Phys. Rev. D 83 (2011) 034030 [arXiv:1009.0947] [INSPIRE].ADSGoogle Scholar
  82. [82]
    W. Altmannshofer, A.J. Buras, D.M. Straub and M. Wick, New strategies for new physics search in \( B\to {K^{*}}\nu \overline{\nu} \) , \( B\to K\nu \overline{\nu} \) and \( B\to {K_s}\nu \overline{\nu} \) decays, JHEP 04 (2009) 022 [arXiv:0902.0160] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    J.F. Kamenik and C. Smith, Tree-level contributions to the rare decays \( {B^{+}}\to {\pi^{+}}\nu \overline{\nu} \) , \( {B^{+}}\to {\pi^{+}}\nu \overline{\nu} \) and \( {B^{+}}\to {K^{*}}^{+}\nu \overline{\nu} \) in the standard model, Phys. Lett. B 680 (2009) 471 [arXiv:0908.1174] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    M. Bartsch, M. Beylich, G. Buchalla and D.-N. Gao, Precision flavour physics with \( B\to K\nu \overline{\nu} \) and BK+,JHEP 11 (2009) 011 [arXiv:0909.1512] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    ALEPH collaboration, R. Barate et al., Measurements of \( BR\left( {b\to {\tau^{-}}{{\overline{\nu}}_{\tau }}X} \right) \) and \( BR\left( {b\to {\tau^{-}}{{\overline{\nu}}_{\tau }}{D^{{*\pm }}}X} \right) \) and upper limits on \( BR\left( {{B^{-}}\to {\tau^{-}}{{\overline{\nu}}_{\tau }}} \right) \) and \( BR\left( {b\to s\nu \overline{\nu}} \right) \), Eur. Phys. J. C 19 (2001) 213 [hep-ex/0010022] [INSPIRE].ADSGoogle Scholar
  86. [86]
    Belle collaboration, K.-F. Chen et al., Search for \( B\to {h^{{\left( * \right)}}}\nu \overline{\nu} \) decays at Belle, Phys. Rev. Lett. 99 (2007) 221802 [arXiv:0707.0138] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    BABAR collaboration, B. Aubert et al., Search for \( B\to {K^{*}}\nu \overline{\nu} \) decays, Phys. Rev. D 78 (2008) 072007 [arXiv:0808.1338] [INSPIRE].ADSGoogle Scholar
  88. [88]
    F. Mescia, C. Smith and S. Trine, K L → π0 e + e and K L → π0 μ + μ : a binary star on the stage of flavor physics, JHEP 08 (2006) 088 [hep-ph/0606081] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    J. Prades, ChPT progress on non-leptonic and radiative kaon decays, PoS (KAON) 022 [arXiv:0707.1789] [INSPIRE].
  90. [90]
    G. Isidori, C. Smith and R. Unterdorfer, The rare decay K L → π0 μ + μ within the SM, Eur. Phys. J. C 36 (2004) 57 [hep-ph/0404127] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    S. Friot, D. Greynat and E. De Rafael, Rare kaon decays revisited, Phys. Lett. B 595 (2004) 301 [hep-ph/0404136] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    C. Bruno and J. Prades, Rare kaon decays in the 1/N c expansion, Z. Phys. C 57 (1993) 585 [hep-ph/9209231] [INSPIRE].ADSGoogle Scholar
  93. [93]
    KTeV collaboration, A. Alavi-Harati et al., Search for the rare decay K L → π0 e + e , Phys. Rev. Lett. 93 (2004) 021805 [hep-ex/0309072] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    KTEV collaboration, A. Alavi-Harati et al., Search for the decay K L → π0 μ + μ , Phys. Rev. Lett. 84 (2000) 5279 [hep-ex/0001006] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    M. Blanke, A.J. Buras, S. Recksiegel and C. Tarantino, The littlest Higgs model with T-parity facing CP-violation in \( {B_s}-{{\overline{B}}_s} \) mixing, arXiv:0805.4393 [INSPIRE].
  96. [96]
    G. Buchalla, G. D’Ambrosio and G. Isidori, Extracting short distance physics from K L,S → π0 e + e decays, Nucl. Phys. B 672 (2003) 387 [hep-ph/0308008] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    A.J. Buras, M.E. Lautenbacher, M. Misiak and M. Münz, Direct CP-violation in K L → π0 e + e beyond leading logarithms, Nucl. Phys. B 423 (1994) 349 [hep-ph/9402347] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    A.J. Buras, L. Merlo and E. Stamou, The impact of flavour changing neutral gauge bosons on \( \overline{B}\to {X_s}\gamma \), JHEP 08 (2011) 124 [arXiv:1105.5146] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    P.L. Cho and M. Misiak, bsγ decay in SU(2)L × SU(2)R × U(1) extensions of the standard model, Phys. Rev. D 49 (1994) 5894 [hep-ph/9310332] [INSPIRE].ADSGoogle Scholar
  100. [100]
    G. Ricciardi, Brief review on semileptonic B decays, Mod. Phys. Lett. A 27 (2012) 1230037 [arXiv:1209.1407] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    Belle collaboration, I. Adachi et al., Measurement of \( {B^{-}}\to {\tau^{-}}{{\overline{\nu}}_{\tau }} \) with a hadronic tagging method using the full data sample of Belle, arXiv:1208.4678 [INSPIRE].
  102. [102]
    C. Tarantino, Flavor lattice QCD in the precision era, arXiv:1210.0474 [INSPIRE].
  103. [103]
    M. Antonelli et al., Flavor physics in the quark sector, Phys. Rept. 494 (2010) 197 [arXiv:0907.5386] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    LHCb collaboration, Implications of LHCb measurements and future prospects, arXiv:1208.3355 [INSPIRE].
  105. [105]
    Particle Data Group collaboration, K. Nakamura et. al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].ADSGoogle Scholar
  107. [107]
    K. Chetyrkin et al., Charm and bottom quark masses: an update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [INSPIRE].ADSGoogle Scholar
  108. [108]
    HPQCD collaboration, I. Allison et al., High-precision charm-quark mass from current-current correlators in lattice and continuum QCD, Phys. Rev. D 78 (2008) 054513 [arXiv:0805.2999] [INSPIRE].ADSGoogle Scholar
  109. [109]
    CDF collaboration, A. Abulencia et al., Observation of \( B_s^0-\overline{B}_s^0 \) oscillations, Phys. Rev. Lett. 97 (2006) 242003 [hep-ex/0609040] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    LHCb collaboration, Measurement of the \( B_s^0-\overline{B}_s^0 \) oscillation frequency Δm s in \( B_s^0\to D_s^{-}(3)\pi \) decays, Phys. Lett. B 709 (2012) 177 [arXiv:1112.4311] [INSPIRE].ADSGoogle Scholar
  111. [111]
    P. Clarke, Results on CP-violation in B s Mixing, LHCb-TALK-2012-029, CERN, Geneva Switzerland (2012).
  112. [112]
    CMS collaboration, Search for narrow resonances in dilepton mass spectra in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 714 (2012) 158 [arXiv:1206.1849] [INSPIRE].ADSGoogle Scholar
  113. [113]
    Y. Grossman and Y. Nir, \( {K_L}\to {\pi^0}\nu \overline{\nu} \) beyond the standard model, Phys. Lett. B 398 (1997) 163 [hep-ph/9701313] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    A.J. Buras, K. Gemmler and G. Isidori, Quark flavour mixing with right-handed currents: an effective theory approach, Nucl. Phys. B 843 (2011) 107 [arXiv:1007.1993] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    A.J. Buras, Relations between ΔM s,d and B s,dμ + μ in models with minimal flavor violation, Phys. Lett. B 566 (2003) 115 [hep-ph/0303060] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    A.J. Buras, B. Duling and S. Gori, The impact of Kaluza-Klein fermions on standard model fermion couplings in a RS model with custodial protection, JHEP 09 (2009) 076 [arXiv:0905.2318] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    F. Botella, G. Branco and M. Nebot, The hunt for new physics in the flavour sector with up vector-like quarks, JHEP 12 (2012) 040 [arXiv:1207.4440] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    T. Blum et al., K → ππ decay amplitudes from lattice QCD, Phys. Rev. D 84 (2011) 114503 [arXiv:1106.2714] [INSPIRE].ADSGoogle Scholar
  119. [119]
    T. Blum et al., The K → (ππ)I=2 decay amplitude from lattice QCD, Phys. Rev. Lett. 108 (2012) 141601 [arXiv:1111.1699] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    T. Blum et al., Lattice determination of the K → (ππ)I=2 decay amplitude A 2, Phys. Rev. D 86 (2012) 074513 [arXiv:1206.5142] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Andrzej J. Buras
    • 1
    • 2
  • Fulvia De Fazio
    • 3
  • Jennifer Girrbach
    • 1
    • 2
  1. 1.TUM Institute for Advanced StudyGarchingGermany
  2. 2.Physik DepartmentTechnische Universität MünchenGarchingGermany
  3. 3.Istituto Nazionale di Fisica Nucleare, Sezione di BariBariItaly

Personalised recommendations