Journal of High Energy Physics

, 2013:113 | Cite as

The low energy dynamics of charge two dyonic instantons

  • James P. Allen
  • Douglas J. Smith


We explore the low energy dynamics of charge two instantons and dyonic instantons in SU(2) 5-dimensional Yang-Mills. We make use of the moduli space approximation and first calculate the moduli space metric for two instantons. For dyonic instantons the effective action of the moduli space approximation also includes a potential term which we calculate. Using the ADHM construction we are able to understand some aspects of the topology and structure of the moduli space. We find that instantons undergo right angled scattering after a head on collision and we are able to give an analytic description of this in terms of a quotient of the moduli space by symmetries of the ADHM data. We also explore the scattering of instantons and dyonic instantons numerically in a constrained region of the moduli space. Finally we exhibit some examples of closed geodesics on the moduli space, and geodesics which hit the moduli space singularities in finite time.


Solitons Monopoles and Instantons D-branes 


  1. [1]
    A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Yu.S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett B 59 (1975) 85 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    N. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, The calculus of many instantons, Phys. Rept. 371 (2002) 231 [hep-th/0206063] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. [3]
    M.A. Shifman and A.I. Vainshtein. Instantons versus supersymmetry: fifteen years later, in ITEP lectures on particle physics and field theory. Volume 2, M.A. Shifman ed., World Scientific, Singapore (1999) [hep-th/9902018] [INSPIRE].Google Scholar
  4. [4]
    D, Tong, TASI lectures on solitons: Instantons, monopoles, vortices and kinks, hep-th/0509216 [INSPIRE].
  5. [5]
    M.R. Douglas, Branes within branes, in the proceedings of Cargese 1997, Strings, branes and dualities, May 6-June 14, Cargese, France (1997), hep-th/9512077 [INSPIRE].
  6. [6]
    E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    O. Aharony, M. Berkooz, S. Kachru, N. Seiberg and E. Silverstein, Matrix description of interacting theories in six-dimensions, Adv. Theor. Math. Phys. 1 (1998) 148 [hep-th/9707079] [INSPIRE].MathSciNetGoogle Scholar
  8. [8]
    O. Aharony, M. Berkooz and N. Seiberg, Light cone description of (2, 0) superconformal theories in six-dimensions, Adv. Theor. Math. Phys. 2 (1998) 119 [hep-th/9712117] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  9. [9]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M 5-branes, D4-branes and quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].ADSGoogle Scholar
  11. [11]
    N.S. Manton, A remark on the scattering of BPS monopoles, Phys. Lett. B 110 (1982) 54 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    N.D. Lambert and D. Tong, Dyonic instantons in five-dimensional gauge theories, Phys. Lett. B 462 (1999) 89 [hep-th/9907014] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Zamaklar, Geometry of the nonabelian DBI dyonic instanton, Phys. Lett. B 493 (2000) 411 [hep-th/0006090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    S. Kim and K.-M. Lee, Dyonic instanton as supertube between D4 branes, JHEP 09 (2003) 035 [hep-th/0307048] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M.-Y. Choi, K.K. Kim, C. Lee and K.-M. Lee, Higgs structures of dyonic instantons, JHEP 04 (2008) 097 [arXiv:0712.0735] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    N. Nekrasov and A.S. Schwarz, Instantons on noncommutative r 4 and (2, 0) superconformal six-dimensional theory, Commun. Math. Phys. 198 (1998) 689 [hep-th/9802068] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. [17]
    K. Peeters and M. Zamaklar, Motion on moduli spaces with potentials, JHEP 12 (2001) 032 [hep-th/0107164] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    H. Osborn, Semiclassical functional integrals for selfdual gauge fields, Annals Phys. 135 (1981) 373 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  19. [19]
    D. Tong, A note on 1/4 BPS states, Phys. Lett. B 460 (1999) 295 [hep-th/9902005] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Bak, C.-K. Lee, K.-M. Lee and P. Yi, Low-energy dynamics for 1/4 BPS dyons, Phys. Rev. D 61 (2000) 025001 [hep-th/9906119] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    D. Bak and K.-M. Lee, Comments on the moduli dynamics of 1/4 BPS dyons, Phys. Lett. B 468 (1999) 76 [hep-th/9909035] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Dorey, V.V. Khoze and M.P. Mattis, Multi-instanton calculus in N = 2 supersymmetric gauge theory, Phys. Rev. D 54 (1996) 2921 [hep-th/9603136] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    E.J. Weinberg and P. Yi, Magnetic monopole dynamics, supersymmetry and duality, Phys. Rept. 438 (2007) 65 [hep-th/0609055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037 [hep-th/0306150] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    R.A. Leese, Q-lumps and their interactions, Nucl. Phys. B 366 (1991) 283 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    R. Ward, Slowly moving lumps in the CP 1 model in (2 + 1)-dimensions, Phys. Lett. B 158 (1985) 424 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R. Leese and T. Samols, Interaction of semilocal vortices, Nucl. Phys. B 396 (1993) 639 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    N. Lambert and C. Papageorgakis, Nonabelian (2, 0) tensor multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    N. Lambert and P. Richmond, (2, 0) supersymmetry and the light-cone description of M 5-branes, JHEP 02 (2012) 013 [arXiv:1109.6454] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    K.-M. Lee and P. Yi, Quantum spectrum of instanton solitons in five-dimensional noncommutative U(N) theories, Phys. Rev. D 61 (2000) 125015 [hep-th/9911186] [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of M 5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of Mathematical SciencesDurham UniversityDurhamU.K.

Personalised recommendations