Advertisement

Journal of High Energy Physics

, 2013:111 | Cite as

Target spaces from chiral gauge theories

  • Ilarion Melnikov
  • Callum Quigley
  • Savdeep SethiEmail author
  • Mark Stern
Article

Abstract

Chiral gauge theories in two dimensions with (0, 2) supersymmetry are central in the study of string compactifications. Remarkably little is known about generic (0, 2) theories. We consider theories with branches on which multiplets with a net gauge anomaly become massive. The simplest example is a relevant perturbation of the gauge theory that flows to the \( \mathbb{C}{{\mathbb{P}}^n} \) model. To compute the effective action, we derive a useful set of Feynman rules for (0, 2) supergraphs. From the effective action, we see that the infra-red geometry reflects the gauge anomaly by the presence of a boundary at finite distance. In generic examples, there are boundaries, fluxes and branes; the resulting spaces are non-Kähler.

Keywords

Flux compactifications Field Theories in Lower Dimensions Superstrings and Heterotic Strings Sigma Models 

References

  1. [1]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C. Quigley and S. Sethi, Linear σ-models with torsion, JHEP 11 (2011) 034 [arXiv:1107.0714] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    M. Blaszczyk, S. Nibbelink Groot and F. Ruehle, Green-Schwarz mechanism in heterotic (2, 0) gauged linear σ-models: torsion and N S5 branes, JHEP 08 (2011) 083 [arXiv:1107.0320] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Adams, M. Ernebjerg and J.M. Lapan, Linear models for flux vacua, Adv. Theor. Math. Phys. 12 (2008) 817 [hep-th/0611084] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Adams, Orbifold phases of heterotic flux vacua, arXiv:0908.2994 [INSPIRE].
  6. [6]
    A. Adams and D. Guarrera, Heterotic flux vacua from hybrid linear models, arXiv:0902.4440 [INSPIRE].
  7. [7]
    C. Quigley, S. Sethi and M. Stern, Novel branches of (0, 2) theories, JHEP 09 (2012) 064 [arXiv:1206.3228] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    K. Becker and S. Sethi, Torsional heterotic geometries, Nucl. Phys. B 820 (2009) 1 [arXiv:0903.3769] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    C.M. Hull and P.K. Townsend, World sheet supersymmetry and anomaly cancellation in the heterotic string, Phys. Lett. B 178 (1986) 187 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    I.V. Melnikov, R. Minasian and S. Theisen, Heterotic flux backgrounds and their IIA duals, arXiv:1206.1417 [INSPIRE].
  11. [11]
    P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].ADSGoogle Scholar
  12. [12]
    K. Bardakci, M. Crescimanno and S. Hotes, Parafermions from nonabelian coset models, Nucl. Phys. B 349 (1991) 439 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    P. Koroteev, A. Monin and W. Vinci, Large-N solution of the heterotic weighted non-linear σ-model, Phys. Rev. D 82 (2010) 125023 [arXiv:1009.6207] [INSPIRE].ADSGoogle Scholar
  14. [14]
    X. Cui and M. Shifman, N = (0, 2) supersymmetry and a nonrenormalization theorem, Phys. Rev. D 84 (2011) 105016 [arXiv:1105.5107] [INSPIRE].ADSGoogle Scholar
  15. [15]
    X. Cui and M. Shifman, N = (0, 2) deformation of CP (1) model: two-dimensional analog of N =1 Yang-Mills theory in four dimensions,Phys. Rev. D 85 (2012) 045004 [arXiv:1111.6350] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Adams, E. Dyer and J. Lee, GLSMs for non-Kähler geometries, JHEP 01 (2013) 044 [arXiv:1206.5815] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Adams, A. Basu and S. Sethi, (0, 2) duality, Adv. Theor. Math. Phys. 7 (2004) 865 [hep-th/0309226] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  18. [18]
    S.H. Katz and E. Sharpe, Notes on certain (0, 2) correlation functions, Commun. Math. Phys. 262 (2006) 611 [hep-th/0406226] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Adams, J. Distler and M. Ernebjerg, Topological heterotic rings, Adv. Theor. Math. Phys. 10 (2006) 657 [hep-th/0506263] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    E. Sharpe, Notes on certain other (0, 2) correlation functions, Adv. Theor. Math. Phys. 13 (2009) 33 [hep-th/0605005] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M.-C. Tan, Two-dimensional twisted σ-models and the theory of chiral differential operators, Adv. Theor. Math. Phys. 10 (2006) 759 [hep-th/0604179] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    J. Guffin and S. Katz, Deformed quantum cohomology and (0, 2) mirror symmetry, JHEP 08 (2010) 109 [arXiv:0710.2354] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    M.-C. Tan, Two-dimensional twisted σ-models, the mirror chiral de Rham complex and twisted generalised mirror symmetry, JHEP 07 (2007) 013 [arXiv:0705.0790] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Donagi, J. Guffin, S. Katz and E. Sharpe, Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties, arXiv:1110.3752 [INSPIRE].
  25. [25]
    R. Donagi, J. Guffin, S. Katz and E. Sharpe, A mathematical theory of quantum sheaf cohomology, arXiv:1110.3751 [INSPIRE].
  26. [26]
    K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].
  27. [27]
    I. Melnikov, S. Sethi and E. Sharpe, Recent developments in (0, 2) mirror symmetry, SIGMA 8 (2012) 068 [arXiv:1209.1134] [INSPIRE].MathSciNetGoogle Scholar
  28. [28]
    L. Carlevaro and D. Israel, Gauge threshold corrections for N = 2 heterotic local models with flux and Mock modular forms, arXiv:1210.5566 [INSPIRE].
  29. [29]
    L. Carlevaro and D. Israel, Heterotic resolved conifolds with torsion, from supergravity to CFT, JHEP 01 (2010) 083 [arXiv:0910.3190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Adams and J.M. Lapan, Computing the spectrum of a heterotic flux vacuum, JHEP 03 (2011) 045 [arXiv:0908.4294] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    S. Sethi, The matrix formulation of type IIB five-branes, Nucl. Phys. B 523 (1998) 158 [hep-th/9710005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A. Kapustin and S. Sethi, The Higgs branch of impurity theories, Adv. Theor. Math. Phys. 2 (1998) 571 [hep-th/9804027] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  33. [33]
    G. Gibbons, P. Rychenkova and R. Goto, Hyper-Kähler quotient construction of BPS monopole moduli spaces, Commun. Math. Phys. 186 (1997) 585 [hep-th/9608085] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  35. [35]
    L. Álvarez-Gaumé and P.H. Ginsparg, The structure of gauge and gravitational anomalies, Annals Phys. 161 (1985) 423 [Erratum ibid. 171 (1986) 233] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    R. Jackiw and R. Rajaraman, Vector meson mass generation through chiral anomalies, Phys. Rev. Lett. 54 (1985) 1219 [Erratum ibid. 54 (1985) 2060] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    D. Boyanovsky, I. Schmidt and M.F. Golterman, The physics of the chiral Schwinger model: taming an anomalous theory, Annals Phys. 185 (1988) 111 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Fujikawa, Path integral measure for gauge invariant fermion theories, Phys. Rev. Lett. 42 (1979) 1195 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    E. D’Hoker and E. Farhi, Decoupling a fermion whose mass is generated by a Yukawa coupling: the general case, Nucl. Phys. B 248 (1984) 59 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    D.S. Hwang, Supersymmetry anomaly in two-dimensions, Nucl. Phys. B 267 (1986) 349 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    E. D’Hoker and E. Farhi, Decoupling a fermion in the standard electroweak theory, Nucl. Phys. B 248 (1984) 77 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  42. [42]
    A. Sen, (2, 0) supersymmetry and space-time supersymmetry in the heterotic string theory, Nucl. Phys. B 278 (1986) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    P.S. Howe and G. Papadopoulos, Anomalies in two-dimensional supersymmetric nonlinear σ-models, Class. Quant. Grav. 4 (1987) 1749 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  44. [44]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    J.-X. Fu and S.-T. Yau, The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampere equation, J. Diff. Geom. 78 (2009) 369 [hep-th/0604063] [INSPIRE].MathSciNetGoogle Scholar
  46. [46]
    M. Becker, L.-S. Tseng and S.-T. Yau, New heterotic non-Kähler geometries, Adv. Theor. Math. Phys. 13 (2009) 1815 [arXiv:0807.0827] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    K. Becker, C. Bertinato, Y.-C. Chung and G. Guo, Supersymmetry breaking, heterotic strings and fluxes, Nucl. Phys. B 823 (2009) 428 [arXiv:0904.2932] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    I.V. Melnikov and R. Minasian, Heterotic σ-models with N = 2 space-time supersymmetry, JHEP 09 (2011) 065 [arXiv:1010.5365] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. McOrist, The revival of (0, 2) linear σ-models, Int. J. Mod. Phys. A 26 (2011) 1 [arXiv:1010.4667] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  51. [51]
    A. Bilal, (Non) gauge invariance of Wilsonian effective actions in (supersymmetric) gauge theories: a critical discussion, Annals Phys. 323 (2008) 2311 [arXiv:0705.0362] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    B.A. Ovrut and J. Wess, Supersymmetric R(ξ) gauge and radiative symmetry breaking, Phys. Rev. D 25 (1982) 409 [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Ilarion Melnikov
    • 1
  • Callum Quigley
    • 2
  • Savdeep Sethi
    • 2
    Email author
  • Mark Stern
    • 3
  1. 1.Max Planck Institute for Gravitational PhysicsGolmGermany
  2. 2.Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A
  3. 3.Department of MathematicsDuke UniversityDurhamU.S.A

Personalised recommendations