Journal of High Energy Physics

, 2013:94 | Cite as

Unitarising matrix element + parton shower merging

  • Leif Lönnblad
  • Stefan Prestel


We revisit the CKKW-L method for merging tree-level matrix elements with parton showers, and amend it with an add/subtract scheme to minimise dependencies on the merging scale. The scheme is constructed to, as far as possible, recover the unitary nature of the underlying parton shower, so that the inclusive cross section is retained for each jet multiplicity separately.


QCD Phenomenology Monte Carlo Simulations 


  1. [1]
    N. Lavesson and L. Lönnblad, Extending CKKW-merging to One-Loop Matrix Elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP 06 (2010) 039 [arXiv:1004.1764] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO matrix elements and truncated showers, JHEP 08 (2011) 123 [arXiv:1009.1127] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Alioli, K. Hamilton and E. Re, Practical improvements and merging of POWHEG simulations for vector boson production, JHEP 09 (2011) 104 [arXiv:1108.0909] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K. Hamilton, P. Nason and G. Zanderighi, MINLO: Multi-Scale Improved NLO, JHEP 10 (2012) 155 [arXiv:1206.3572] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T. Gehrmann, S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO QCD matrix elements + parton showers in e + e hadrons, JHEP 01 (2013) 144 [arXiv:1207.5031] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, arXiv:1207.5030 [INSPIRE].
  8. [8]
    R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA. I. A New framework for event generation, JHEP 12 (2008) 010 [arXiv:0801.4026] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA. II. A Phase space generator from a reweighted parton shower, JHEP 12 (2008) 011 [arXiv:0801.4028] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Alioli et al., Combining Higher-Order Resummation with Multiple NLO Calculations and Parton Showers in GENEVA, arXiv:1211.7049 [INSPIRE].
  12. [12]
    S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    N. Lavesson and L. Lönnblad, W+jets matrix elements and the dipole cascade, JHEP 07 (2005) 054 [hep-ph/0503293] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L. Lönnblad and S. Prestel, Matching Tree-Level Matrix Elements with Interleaved Showers, JHEP 03 (2012) 019 [arXiv:1109.4829] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    M. Bengtsson and T. Sjöstrand, A Comparative Study of Coherent and Noncoherent Parton Shower Evolution, Nucl. Phys. B 289 (1987) 810 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Bengtsson and T. Sjöstrand, Coherent Parton Showers Versus Matrix Elements: Implications of PETRA - PEP Data, Phys. Lett. B 185 (1987) 435 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Miu, A Matrix element based modification of the parton shower, hep-ph/9804317 [INSPIRE].
  20. [20]
    G. Miu and T. Sjöstrand, W production in an improved parton shower approach, Phys. Lett. B 449 (1999) 313 [hep-ph/9812455] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    W.T. Giele, D.A. Kosower and P.Z. Skands, A Simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].ADSGoogle Scholar
  22. [22]
    W. Giele, D. Kosower and P. Skands, Higher-Order Corrections to Timelike Jets, Phys. Rev. D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].ADSGoogle Scholar
  23. [23]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Alwall et al., A Standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Balázs, J. Huston and I. Puljak, Higgs production: A Comparison of parton showers and resummation, Phys. Rev. D 63 (2001) 014021 [hep-ph/0002032] [INSPIRE].ADSGoogle Scholar
  28. [28]
    R. Corke and T. Sjöstrand, Interleaved Parton Showers and Tuning Prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    ATLAS collaboration, Summary of ATLAS PYTHIA 8 tunes, ATL-PHYS-PUB-2012-003 (2012).
  30. [30]
    A. Buckley et al., Rivet user manual, arXiv:1003.0694 [INSPIRE].
  31. [31]
    ATLAS collaboration, Study of jets produced in association with a W boson in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 092002 [arXiv:1201.1276] [INSPIRE].ADSGoogle Scholar
  32. [32]
    ATLAS collaboration, Study of Jet Shapes in Inclusive Jet Production in pp Collisions at \( \sqrt{s}=7 \) TeV using the ATLAS Detector, Phys. Rev. D 83 (2011) 052003 [arXiv:1101.0070] [INSPIRE].ADSGoogle Scholar
  33. [33]
    ATLAS collaboration, Measurement of underlying event characteristics using charged particles in pp collisions at \( \sqrt{s}=900GeV \) and 7 TeV with the ATLAS detector, Phys. Rev. D 83 (2011) 112001 [arXiv:1012.0791] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    F. Campanario and S. Sapeta, WZ production beyond NLO for high-pT observables, Phys. Lett. B 718 (2012) 100 [arXiv:1209.4595] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, W+n-jet predictions with MC@NLO in Sherpa, Physical Review Letters (2012) [arXiv:1201.5882] [INSPIRE].
  39. [39]
    V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L. Lönnblad, Fooling Around with the Sudakov Veto Algorithm, arXiv:1211.7204 [INSPIRE].
  41. [41]
    H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra, Europhys. Lett. 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    L. Lönnblad and S. Prestel, Merging Multi-leg NLO Matrix Elements with Parton Showers, arXiv:1211.7278 [INSPIRE].
  43. [43]
    S. Plätzer, Controlling inclusive cross sections in parton shower + matrix element merging, arXiv:1211.5467 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Dept. of Astronomy and Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations