Vacuum stability of Standard Model++


  1. [1]

    F. Gianotti, Update on the Standard Model Higgs Searches in ATLAS, CERN Seminar, CERN, Geneva Switzerland, 4 July 2012.

  2. [2]

    J. Incandela, Update on the Standard Model Higgs Searches in CMS, CERN Seminar, CERN, Geneva Switzerland, 4 July 2012.

  3. [3]

    ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \(\sqrt{s}=7\) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \(\sqrt{s}=7\) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    O. Arnaez, Searches for the SM scalar boson in the HW + W channels with the ATLAS detector, talk given at Higgs Hunting 2012, Orsay France, 18-20 July 2012.

  6. [6]

    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    CDF and D0 collaborations, Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].

    Article  Google Scholar 

  9. [9]

    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    T. Plehn and M. Rauch, Higgs Couplings after the Discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].

    Article  Google Scholar 

  12. [12]

    M. Lindner, M. Sher and H.W. Zaglauer, Probing Vacuum Stability Bounds at the Fermilab Collider, Phys. Lett. B 228 (1989) 139 [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    M. Sher, Electroweak Higgs Potentials and Vacuum Stability, Phys. Rept. 179 (1989) 273 [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    M.A. Diaz, T.A. ter Veldhuis and T.J. Weiler, The Higgs mass as the discriminator of electroweak models, Phys. Rev. Lett. 74 (1995) 2876 [hep-ph/9408319] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    J. Casas, J. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    M.A. Diaz, T.A. ter Veldhuis and T.J. Weiler, Updated: Higgs mass bounds separate models of electroweak symmetry breaking, Phys. Rev. D 54 (1996) 5855 [hep-ph/9512229] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    J. Casas, J. Espinosa and M. Quirós, Standard model stability bounds for new physics within LHC reach, Phys. Lett. B 382 (1996) 374 [hep-ph/9603227] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The Probable Fate of the Standard Model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    Z.-z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, Phys. Rev. D 86 (2012) 013013 [arXiv:1112.3112] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    L.A. Anchordoqui et al., LHC Phenomenology and Cosmology of String-Inspired Intersecting D-brane Models, Phys. Rev. D 86 (2012) 066004 [arXiv:1206.2537] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    D. Lüst, Intersecting brane worlds: a path to the standard model?, Class. Quant. Grav. 21 (2004) S1399 [hep-th/0401156] [INSPIRE].

    Article  Google Scholar 

  27. [27]

    R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    D. Cremades, L. Ibáñez and F. Marchesano, Yukawa couplings in intersecting D-brane models, JHEP 07 (2003) 038 [hep-th/0302105] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    L.A. Anchordoqui et al., Z-gauge Bosons as Harbingers of Low Mass Strings, Phys. Rev. D 85 (2012) 086003 [arXiv:1107.4309] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    D. Berenstein and S. Pinansky, The Minimal Quiver Standard Model, Phys. Rev. D 75 (2007) 095009 [hep-th/0610104] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    M. Cvetič, J. Halverson and P. Langacker, Implications of string constraints for exotic matter and Zs beyond the Standard Model, JHEP 11 (2011) 058 [arXiv:1108.5187] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    M. Kadastik, K. Kannike and M. Raidal, Dark Matter as the signal of Grand Unification, Phys. Rev. D 80 (2009) 085020 [Erratum ibid. D 81 (2010) 029903] [arXiv:0907.1894] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex Singlet Extension of the Standard Model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    L.A. Anchordoqui, H. Goldberg, X. Huang, D. Lüst and T.R. Taylor, Stringy origin of Tevatron Wjj anomaly, Phys. Lett. B 701 (2011) 224 [arXiv:1104.2302] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    L. Basso, S. Moretti and G.M. Pruna, A Renormalisation Group Equation Study of the Scalar Sector of the Minimal B-L Extension of the Standard Model, Phys. Rev. D 82 (2010) 055018 [arXiv:1004.3039] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    J. Casas, J. Espinosa, M. Quirós and A. Riotto, The lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995) 466-468] [hep-ph/9407389] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  41. [41]

    L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [INSPIRE].

  42. [42]

    M.R. Douglas, The statistics of string/M theory vacua, JHEP 05 (2003) 046 [hep-th/0303194] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    M. Claudson, L.J. Hall and I. Hinchliffe, Low-Energy Supergravity: False Vacua and Vacuous Predictions, Nucl. Phys. B 228 (1983) 501 [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    L.J. Hall and Y. Nomura, A Finely-Predicted Higgs Boson Mass from A Finely-Tuned Weak Scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    A. Hebecker, A.K. Knochel and T. Weigand, A shift symmetry in the Higgs sector: experimental hints and stringy realizations, JHEP 06 (2012) 093 [arXiv:1204.2551] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Luis A. Anchordoqui.

Additional information

On leave of absence from CPHT Ecole Polytechnique, F-91128, Palaiseau Cedex. (Ignatios Antoniadis)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Anchordoqui, L.A., Antoniadis, I., Goldberg, H. et al. Vacuum stability of Standard Model++ . J. High Energ. Phys. 2013, 74 (2013).

Download citation


  • Higgs Boson
  • Large Hadron Collider
  • Higgs Mass
  • Vacuum Expectation Value
  • Ective Potential