Journal of High Energy Physics

, 2013:74 | Cite as

Vacuum stability of Standard Model++

  • Luis A. AnchordoquiEmail author
  • Ignatios Antoniadis
  • Haim Goldberg
  • Xing Huang
  • Dieter Lüst
  • Tomasz R. Taylor
  • Brian Vlcek
Open Access


Higgs Boson Large Hadron Collider Higgs Mass Vacuum Expectation Value Ective Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    F. Gianotti, Update on the Standard Model Higgs Searches in ATLAS, CERN Seminar, CERN, Geneva Switzerland, 4 July 2012.Google Scholar
  2. [2]
    J. Incandela, Update on the Standard Model Higgs Searches in CMS, CERN Seminar, CERN, Geneva Switzerland, 4 July 2012.Google Scholar
  3. [3]
    ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \(\sqrt{s}=7\) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  4. [4]
    CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \(\sqrt{s}=7\) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSGoogle Scholar
  5. [5]
    O. Arnaez, Searches for the SM scalar boson in the HW + W channels with the ATLAS detector, talk given at Higgs Hunting 2012, Orsay France, 18-20 July 2012.Google Scholar
  6. [6]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  7. [7]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  8. [8]
    CDF and D0 collaborations, Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Plehn and M. Rauch, Higgs Couplings after the Discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    M. Lindner, M. Sher and H.W. Zaglauer, Probing Vacuum Stability Bounds at the Fermilab Collider, Phys. Lett. B 228 (1989) 139 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Sher, Electroweak Higgs Potentials and Vacuum Stability, Phys. Rept. 179 (1989) 273 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M.A. Diaz, T.A. ter Veldhuis and T.J. Weiler, The Higgs mass as the discriminator of electroweak models, Phys. Rev. Lett. 74 (1995) 2876 [hep-ph/9408319] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Casas, J. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M.A. Diaz, T.A. ter Veldhuis and T.J. Weiler, Updated: Higgs mass bounds separate models of electroweak symmetry breaking, Phys. Rev. D 54 (1996) 5855 [hep-ph/9512229] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Casas, J. Espinosa and M. Quirós, Standard model stability bounds for new physics within LHC reach, Phys. Lett. B 382 (1996) 374 [hep-ph/9603227] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The Probable Fate of the Standard Model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Z.-z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, Phys. Rev. D 86 (2012) 013013 [arXiv:1112.3112] [INSPIRE].ADSGoogle Scholar
  23. [23]
    F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    L.A. Anchordoqui et al., LHC Phenomenology and Cosmology of String-Inspired Intersecting D-brane Models, Phys. Rev. D 86 (2012) 066004 [arXiv:1206.2537] [INSPIRE].ADSGoogle Scholar
  26. [26]
    D. Lüst, Intersecting brane worlds: a path to the standard model?, Class. Quant. Grav. 21 (2004) S1399 [hep-th/0401156] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Cremades, L. Ibáñez and F. Marchesano, Yukawa couplings in intersecting D-brane models, JHEP 07 (2003) 038 [hep-th/0302105] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L.A. Anchordoqui et al., Z-gauge Bosons as Harbingers of Low Mass Strings, Phys. Rev. D 85 (2012) 086003 [arXiv:1107.4309] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D. Berenstein and S. Pinansky, The Minimal Quiver Standard Model, Phys. Rev. D 75 (2007) 095009 [hep-th/0610104] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Cvetič, J. Halverson and P. Langacker, Implications of string constraints for exotic matter and Zs beyond the Standard Model, JHEP 11 (2011) 058 [arXiv:1108.5187] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Kadastik, K. Kannike and M. Raidal, Dark Matter as the signal of Grand Unification, Phys. Rev. D 80 (2009) 085020 [Erratum ibid. D 81 (2010) 029903] [arXiv:0907.1894] [INSPIRE].ADSGoogle Scholar
  34. [34]
    V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex Singlet Extension of the Standard Model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L.A. Anchordoqui, H. Goldberg, X. Huang, D. Lüst and T.R. Taylor, Stringy origin of Tevatron Wjj anomaly, Phys. Lett. B 701 (2011) 224 [arXiv:1104.2302] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L. Basso, S. Moretti and G.M. Pruna, A Renormalisation Group Equation Study of the Scalar Sector of the Minimal B-L Extension of the Standard Model, Phys. Rev. D 82 (2010) 055018 [arXiv:1004.3039] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J. Casas, J. Espinosa, M. Quirós and A. Riotto, The lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995) 466-468] [hep-ph/9407389] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [INSPIRE].
  42. [42]
    M.R. Douglas, The statistics of string/M theory vacua, JHEP 05 (2003) 046 [hep-th/0303194] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Claudson, L.J. Hall and I. Hinchliffe, Low-Energy Supergravity: False Vacua and Vacuous Predictions, Nucl. Phys. B 228 (1983) 501 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    L.J. Hall and Y. Nomura, A Finely-Predicted Higgs Boson Mass from A Finely-Tuned Weak Scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Hebecker, A.K. Knochel and T. Weigand, A shift symmetry in the Higgs sector: experimental hints and stringy realizations, JHEP 06 (2012) 093 [arXiv:1204.2551] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Luis A. Anchordoqui
    • 1
    Email author
  • Ignatios Antoniadis
    • 2
  • Haim Goldberg
    • 3
  • Xing Huang
    • 4
  • Dieter Lüst
    • 5
    • 6
  • Tomasz R. Taylor
    • 3
  • Brian Vlcek
    • 1
  1. 1.Department of PhysicsUniversity of Wisconsin-MilwaukeeMilwaukeeU.S.A.
  2. 2.Department of Physics, Theory Division, CERNGeneva 23Switzerland
  3. 3.Department of PhysicsNortheastern UniversityBostonU.S.A.
  4. 4.School of Physics and AstronomySeoul National UniversitySeoulKorea
  5. 5.Max-Planck-Institut für PhysikWerner-Heisenberg-InstitutMünchenGermany
  6. 6.Arnold Sommerfeld Center for Theoretical PhysicsLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations