Advertisement

Journal of High Energy Physics

, 2013:68 | Cite as

Some aspects of QGP phase in a hQCD model

  • Rong-Gen Cai
  • Shankhadeep Chakrabortty
  • Song He
  • Li Li
Article

Abstract

We continue to study the holographic QCD (hQCD) model, proposed in a previous paper, in an Einstein-Maxwell-Dilaton (EMD) system. In this paper we discuss some aspects of quark gluon plasma (QGP) in the hQCD model, such as drag force, jet quenching parameter and screening length. The results turn out to be consistent with those as expected in QCD qualitatively. By calculating free energy of the background black hole solution, we find that there exists a phase transition between small black hole and large black hole when chemical potential μ is less than the critical one μ c , and the phase transition is absent when chemical potential is beyond the critical one.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Black Holes Holography and quark-gluon plasmas 

References

  1. [1]
    PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaborations critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28 [nucl-ex/0410022] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    E. Shuryak, Physics of strongly coupled quark-gluon plasma, Prog. Part. Nucl. Phys. 62 (2009) 48 [arXiv:0807.3033] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    E.V. Shuryak, What RHIC experiments and theory tell us about properties of quark-gluon plasma?, Nucl. Phys. A 750 (2005) 64 [hep-ph/0405066] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Eskola, H. Honkanen, C. Salgado and U. Wiedemann, The fragility of high-p T hadron spectra as a hard probe, Nucl. Phys. A 747 (2005) 511 [hep-ph/0406319] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  9. [9]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  11. [11]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    G. Policastro, D. Son and A. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    D. Teaney, The effects of viscosity on spectra, elliptic flow and HBT radii, Phys. Rev. C 68 (2003) 034913 [nucl-th/0301099] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S.K. Chakrabarti, S. Chakrabortty and S. Jain, Proof of universality of electrical conductivity at finite chemical potential, JHEP 02 (2011) 073 [arXiv:1011.3499] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. He, M. Huang and Q.-S. Yan, Logarithmic correction in the deformed AdS 5 model to produce the heavy quark potential and QCD β-function, Phys. Rev. D 83 (2011) 045034 [arXiv:1004.1880] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D. Li, S. He, M. Huang and Q.-S. Yan, Thermodynamics of deformed AdS 5 model with a positive/negative quadratic correction in graviton-dilaton system, JHEP 09 (2011) 041 [arXiv:1103.5389] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. He, Y.-P. Hu and J.-H. Zhang, Hydrodynamics of a 5D Einstein-dilaton black hole solution and the corresponding BPS state, JHEP 12 (2011) 078 [arXiv:1111.1374] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    R.-G. Cai, S. He and D. Li, A hQCD model and its phase diagram in Einstein-Maxwell-Dilaton system, JHEP 03 (2012) 033 [arXiv:1201.0820] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. He, M. Huang and Q.-s. Yan, Heavy quark potential and QCD β-function from a deformed AdS 5 model, Prog. Theor. Phys. Suppl. 186 (2010) 504 [arXiv:1007.0088] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    P.B. Arnold, Quark-gluon plasmas and thermalization, Int. J. Mod. Phys. E 16 (2007) 2555 [arXiv:0708.0812] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S.-J. Sin and I. Zahed, Amperes law and energy loss in AdS/CFT duality, Phys. Lett. B 648 (2007) 318 [hep-ph/0606049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    C.P. Herzog, Energy loss of heavy quarks from asymptotically AdS geometries, JHEP 09 (2006) 032 [hep-th/0605191] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.J. Friess, S.S. Gubser and G. Michalogiorgakis, Dissipation from a heavy quark moving through N = 4 super-Yang-Mills plasma, JHEP 09 (2006) 072 [hep-th/0605292] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].ADSGoogle Scholar
  29. [29]
    E. Caceres and A. Guijosa, Drag force in charged N = 4 SYM plasma, JHEP 11 (2006) 077 [hep-th/0605235] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    S. Chakrabortty, Dissipative force on an external quark in heavy quark cloud, Phys. Lett. B 705 (2011) 244 [arXiv:1108.0165] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.D. Bjorken, Energy loss of energetic partons in quark-gluon plasma: possible extinction of high p T jets in hadron-hadron collisions, FERMILAB-PUB-82-059-THY (1982) [INSPIRE].
  32. [32]
    PHENIX collaboration, S. Adler et al., Nuclear modification of electron spectra and implications for heavy quark energy loss in Au+Au collisions at \( s_{NN}^{{{1 \left/ {2} \right.}}}=200 \) GeV, Phys. Rev. Lett. 96 (2006) 032301 [nucl-ex/0510047] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    STAR collaboration, J. Bielcik, Centrality dependence of heavy flavor production from single electron measurement in \( s_{NN}^{{{1 \left/ {2} \right.}}}=200 \) GeV Au + Au collisions, Nucl. Phys. A 774 (2006) 697 [nucl-ex/0511005] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and p T broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    F. D’Eramo, H. Liu and K. Rajagopal, Transverse momentum broadening and the jet quenching parameter, redux, Phys. Rev. D 84 (2011) 065015 [arXiv:1006.1367] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Kovner and U.A. Wiedemann, Gluon radiation and parton energy loss, hep-ph/0304151 [INSPIRE].
  37. [37]
    A. Kovner and U.A. Wiedemann, Eikonal evolution and gluon radiation, Phys. Rev. D 64 (2001) 114002 [hep-ph/0106240] [INSPIRE].ADSGoogle Scholar
  38. [38]
    H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    E. Caceres and A. Guijosa, On drag forces and jet quenching in strongly coupled plasmas, JHEP 12 (2006) 068 [hep-th/0606134] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Buchel, On jet quenching parameters in strongly coupled non-conformal gauge theories, Phys. Rev. D 74 (2006) 046006 [hep-th/0605178] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    J.F. Vazquez-Poritz, Enhancing the jet quenching parameter from marginal deformations, hep-th/0605296 [INSPIRE].
  42. [42]
    E. Nakano, S. Teraguchi and W.-Y. Wen, Drag force, jet quenching and AdS/QCD, Phys. Rev. D 75 (2007) 085016 [hep-ph/0608274] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S.D. Avramis and K. Sfetsos, Supergravity and the jet quenching parameter in the presence of R-charge densities, JHEP 01 (2007) 065 [hep-th/0606190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    Y.-h. Gao, W.-s. Xu and D.-f. Zeng, Jet quenching parameters of Sakai-Sugimoto Model, hep-th/0611217 [INSPIRE].
  45. [45]
    N. Armesto, J.D. Edelstein and J. Mas, Jet quenching at finitet Hooft coupling and chemical potential from AdS/CFT, JHEP 09 (2006) 039 [hep-ph/0606245] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    F.-L. Lin and T. Matsuo, Jet quenching parameter in medium with chemical potential from AdS/CFT, Phys. Lett. B 641 (2006) 45 [hep-th/0606136] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    H. Liu, K. Rajagopal and U.A. Wiedemann, An AdS/CFT calculation of screening in a hot wind, Phys. Rev. Lett. 98 (2007) 182301 [hep-ph/0607062] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    E. Caceres, M. Natsuume and T. Okamura, Screening length in plasma winds, JHEP 10 (2006) 011 [hep-th/0607233] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Chernicoff, J.A. Garcia and A. Guijosa, The energy of a moving quark-antiquark pair in an N = 4 SYM plasma, JHEP 09 (2006) 068 [hep-th/0607089] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    M. Chernicoff and A. Guijosa, Acceleration, energy loss and screening in strongly-coupled gauge theories, JHEP 06 (2008) 005 [arXiv:0803.3070] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    E. Kiritsis and V. Niarchos, The holographic quantum effective potential at finite temperature and density, JHEP 08 (2012) 164 [arXiv:1205.6205] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Hawking and D.N. Page, Thermodynamics of black holes in Anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  54. [54]
    C.P. Herzog, A holographic prediction of the deconfinement temperature, Phys. Rev. Lett. 98 (2007) 091601 [hep-th/0608151] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    R.-G. Cai and J.P. Shock, Holographic confinement/deconfinement phase transitions of AdS/QCD in curved spaces, JHEP 08 (2007) 095 [arXiv:0705.3388] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [INSPIRE].CrossRefGoogle Scholar
  57. [57]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].MathSciNetADSGoogle Scholar
  58. [58]
    A. Ficnar, AdS/CFT energy loss in time-dependent string configurations, Phys. Rev. D 86 (2012) 046010 [arXiv:1201.1780] [INSPIRE].ADSGoogle Scholar
  59. [59]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].
  60. [60]
    H. Liu, K. Rajagopal and U.A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    U. Gürsoy, E. Kiritsis, G. Michalogiorgakis and F. Nitti, Thermal transport and drag force in improved holographic QCD, JHEP 12 (2009) 056 [arXiv:0906.1890] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    O. Kaczmarek and F. Zantow, Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding, Phys. Rev. D 71 (2005) 114510 [hep-lat/0503017] [INSPIRE].ADSGoogle Scholar
  63. [63]
    M. Fromm, J. Langelage, S. Lottini and O. Philipsen, The QCD deconfinement transition for heavy quarks and all baryon chemical potentials, JHEP 01 (2012) 042 [arXiv:1111.4953] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    N. Evans, A. Gebauer and K.-Y. Kim, E, B, μ, T phase structure of the D3/D7 holographic dual, JHEP 05 (2011) 067 [arXiv:1103.5627] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    N. Evans, K.-Y. Kim, J.P. Shock and J.P. Shock, Chiral phase transitions and quantum critical points of the D3/D7(D5) system with mutually perpendicular E and B fields at finite temperature and density, JHEP 09 (2011) 021 [arXiv:1107.5053] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    N. Evans, A. Gebauer, M. Magou and K.-Y. Kim, Towards a holographic model of the QCD phase diagram, J. Phys. G 39 (2012) 054005 [arXiv:1109.2633] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    H.-Y. Chen, K. Hashimoto and S. Matsuura, Towards a holographic model of color-flavor locking phase, JHEP 02 (2010) 104 [arXiv:0909.1296] [INSPIRE].ADSGoogle Scholar
  68. [68]
    P. Basu, F. Nogueira, M. Rozali, J.B. Stang and M. Van Raamsdonk, Towards a holographic model of color superconductivity, New J. Phys. 13 (2011) 055001 [arXiv:1101.4042] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    I. Shovkovy and M. Huang, Gapless two flavor color superconductor, Phys. Lett. B 564 (2003) 205 [hep-ph/0302142] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Singh and A. Sinha, Quantum corrections to screening at strong coupling, Nucl. Phys. B 864 (2012) 167 [arXiv:1204.1817] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Rong-Gen Cai
    • 1
  • Shankhadeep Chakrabortty
    • 2
  • Song He
    • 1
  • Li Li
    • 1
  1. 1.State Key Laboratory of Theoretical PhysicsInstitute of Theoretical Physics, Chinese Academy of ScienceBeijingPeople’s Republic of China
  2. 2.Institute of PhysicsBhubaneswarIndia

Personalised recommendations