Journal of High Energy Physics

, 2013:46 | Cite as

Non-standard charged current interactions: beta decays versus the LHC

  • Vincenzo Cirigliano
  • Martín González-Alonso
  • Michael L. Graesser


We discuss low-energy and collider constraints on the effective couplings characterizing non-standard charged current interactions. A direct comparison of low-energy and LHC probes can be performed within an effective theory framework, when the new physics mediating these interactions originates in the multi-TeV scale. We find that for the effective couplings involving right-handed neutrinos the LHC bounds from ppe + MET + X are at the (sub)percent level, already stronger than those from β decays. For operators involving left-handed neutrinos, the (axial-)vector and pseudo-scalar effective couplings are best probed at low energy, while scalar and tensor couplings are currently probed at the same level by beta decays and the LHC channels ppe + MET + X and, by using SU(2) gauge invariance, ppe + e + X. Future beta decay experiments at the 0.1% level or better will compete in sensitivity with higher statistics and higher energy data from the LHC.


Beyond Standard Model Standard Model 


  1. [1]
    S. Weinberg, V-A was the key, J. Phys. Conf. Ser. 196 (2009) 012002 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N. Severijns, M. Beck and O. Naviliat-Cuncic, Tests of the standard electroweak model in beta decay, Rev. Mod. Phys. 78 (2006) 991 [nucl-ex/0605029] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P. Herczeg, Beta decay beyond the standard model, Prog. Part. Nucl. Phys. 46 (2001) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Profumo, M.J. Ramsey-Musolf and S. Tulin, Supersymmetric contributions to weak decay correlation coefficients, Phys. Rev. D 75 (2007) 075017 [hep-ph/0608064] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S. Bauman, J. Erler and M. Ramsey-Musolf, Charged current universality and the MSSM, arXiv:1204.0035 [INSPIRE].
  6. [6]
    T. Lee and C.-N. Yang, Question of parity conservation in weak interactions, Phys. Rev. 104 (1956) 254 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Jackson, S. Treiman and H. Wyld, Possible tests of time reversal invariance in beta decay, Phys. Rev. 106 (1957) 517 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Bhattacharya et al., Probing novel scalar and tensor interactions from (ultra)cold neutrons to the LHC, Phys. Rev. D 85 (2012) 054512 [arXiv:1110.6448] [INSPIRE].ADSGoogle Scholar
  9. [9]
    Particle Data Group, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Green et al., Nucleon scalar and tensor charges from lattice QCD with light Wilson quarks, Phys. Rev. D 86 (2012) 114509 [arXiv:1206.4527] [INSPIRE].ADSGoogle Scholar
  11. [11]
    V. Cirigliano, J. Jenkins and M. Gonzalez-Alonso, Semileptonic decays of light quarks beyond the Standard Model, Nucl. Phys. B 830 (2010) 95 [arXiv:0908.1754] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V. Mateu and J. Portoles, Form-factors in radiative pion decay, Eur. Phys. J. C 52 (2007) 325 [arXiv:0706.1039] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Britton et al., Measurement of the π +e + neutrino branching ratio, Phys. Rev. Lett. 68 (1992) 3000 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Czapek et al., Branching ratio for the rare pion decay into positron and neutrino, Phys. Rev. Lett. 70 (1993) 17 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    V. Cirigliano and I. Rosell, Two-loop effective theory analysis of π(K) → \( e{{\overline{nu}}_e}\left[ \gamma \right] \) branching ratios, Phys. Rev. Lett. 99 (2007) 231801 [arXiv:0707.3439] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Hardy and I. Towner, Superallowed 0+ → 0+ nuclear beta decays: a new survey with precision tests of the conserved vector current hypothesis and the standard model, Phys. Rev. C 79 (2009) 055502 [arXiv:0812.1202] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Bychkov et al., New precise measurement of the pion weak form factors in π +e + νγ decay, Phys. Rev. Lett. 103 (2009) 051802 [arXiv:0804.1815] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Voloshin, Upper bound on tensor interaction in the decay π \( {e^{-}}\overline{\nu}\gamma \), Phys. Lett. B 283 (1992) 120 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Herczeg, On the question of a tensor interaction in πeνe γ decay, Phys. Rev. D 49 (1994) 247 [INSPIRE].ADSGoogle Scholar
  21. [21]
    B.A. Campbell and D.W. Maybury, Constraints on scalar couplings from π ±l ±νl, Nucl. Phys. B 709 (2005) 419 [hep-ph/0303046] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    W. Wilburn et al., Measurement of the neutrino-spin correlation parameter b in neutron decay using ultracold neutrons, Rev. Mex. Fis. Suppl. 55 (2009) 119.Google Scholar
  23. [23]
    R. Alarcon et al., Precise measurement of neutron decay parameters (2007).Google Scholar
  24. [24]
    Nab collaboration, D. Pocanic et al., Nab: Measurement Principles, Apparatus and Uncertainties, Nucl. Instrum. Meth. A 611 (2009) 211 [arXiv:0810.0251] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K.P. Hickerson, The Fierz interference term in beta-decay spectrum of UCN, talk given at the UCN Workshop, November 6–7, Santa Fe, New Mexico, U.S.A. (2009).Google Scholar
  26. [26]
    A. Knecht et al., A high-intensity source of 6 He atoms for fundamental research, Nucl. Instrum. Meth. A 660 (2011) 43.ADSCrossRefGoogle Scholar
  27. [27]
    J.D. Jackson, S.B. Treiman and H.W. Wyld, Coulomb corrections in allowed beta transitions, Nucl. Phys. 4 (1957) 206.CrossRefGoogle Scholar
  28. [28]
    V.D. Barger, A.D. Martin, and R. Phillips, Perpendicular e neutrino mass from W decay, Z. Phys. C 21 (1983) 99 [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    CMS collaboration, Search for leptonic decays of Wbosons in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 08 (2012) 023 [arXiv:1204.4764] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    ATLAS collaboration, ATLAS search for a heavy gauge boson decaying to a charged lepton and a neutrino in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 72 (2012) 2241 [arXiv:1209.4446] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    CMS collaboration, Search for leptonic decays of W bosons in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-12-010 (2012).
  34. [34]
    D.J. Broadhurst and A. Grozin, Matching QCD and HQET heavy-light currents at two loops and beyond, Phys. Rev. D 52 (1995) 4082 [hep-ph/9410240] [INSPIRE].ADSGoogle Scholar
  35. [35]
    CMS collaboration, Search for narrow resonances in dilepton mass spectra in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 714 (2012) 158 [arXiv:1206.1849] [INSPIRE].ADSGoogle Scholar
  36. [36]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Vincenzo Cirigliano
    • 1
  • Martín González-Alonso
    • 2
  • Michael L. Graesser
    • 1
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosU.S.A.
  2. 2.Department of PhysicsUniversity of Wisconsin-MadisonMadisonU.S.A.

Personalised recommendations