Measurement of J/ψ production in pp collisions at \(\sqrt{s}=2.76\;\mathrm{TeV}\)


The production of J/ψ mesons is studied with the LHCb detector using data from pp collisions at \(\sqrt{s}=2.76\) TeV corresponding to an integrated luminosity of 71 nb−1. The differential cross-section for inclusive J/ψ production is measured as a function of its transverse momentum p T. The cross-section in the fiducial region 0 < p T< 12 GeV/c and rapidity 2.0 < \(y\) < 4.5 is measured to be 5.6 ± 0.1 (stat) ± 0.4 (syst) μb, with the assumption of unpolarised J/ψ production. The fraction of J/ψ production from b-hadron decays is measured to be (7.1 ± 0.6 (stat) ± 0.7 (syst))%.


  1. [1]

    LHCb collaboration, Measurement of J/ψ production in pp collisions at \(\sqrt{s}=7\) TeV, Eur. Phys. J. C 71 (2011) 1645 [arXiv:1103.0423] [INSPIRE].

    Google Scholar 

  2. [2]

    ALICE collaboration, Rapidity and transverse momentum dependence of inclusive J/ψ production in pp collisions at \(\sqrt{s}=7\) TeV, Phys. Lett. B 704 (2011) 442 [Erratum ibid. B 718 (2012) 692-698] [arXiv:1105.0380] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    ATLAS collaboration, Measurement of the differential cross-sections of inclusive, prompt and non-prompt J/ψ production in proton-proton collisions at \(\sqrt{s}=7\) TeV, Nucl. Phys. B 850 (2011) 387 [arXiv:1104.3038] [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    CMS collaboration, J/ψ and ψ 2S production in pp collisions at \(\sqrt{s}=7\) TeV, JHEP 02 (2012) 011 [arXiv:1111.1557] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    N. Brambilla et al., Heavy quarkonium: progress, puzzles and opportunities, Eur. Phys. J. C 71 (2011) 1534 [arXiv:1010.5827] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    R. Aaij et al., The LHCb trigger and its performance, arXiv:1211.3055 [INSPIRE].

  8. [8]

    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, IEEE Nucl. Sci. Symp. Conf. Rec. (2010) 1155.

  11. [11]

    D. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    GEANT4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.

    ADS  Article  Google Scholar 

  13. [13]

    GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.

    ADS  Article  Google Scholar 

  15. [15]

    P. Golonka and Z. Was, PHOTOS Monte Carlo: A Precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    T. Skwarnicki, A study of the radiative cascade transitions between the \({\varUpsilon^{\prime }}\) and \(\varUpsilon\) resonances, Ph.D. thesis, Institute of Nuclear Physics, Krakow, Poland (1986) [DESY-F31-86-02]

  17. [17]

    S. van der Meer, Calibration of the effective beam height in the ISR, ISR-PO-68-31 (1968).

  18. [18]

    LHCb collaboration, Absolute luminosity measurements with the LHCb detector at the LHC, 2012 JINST 7 P01010 [arXiv:1110.2866] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    J. Gras, M. Ludwig and P. Odier, The 2010 LHC DC BCT measurement system and its main sources of uncertainties, CERN-LHC-Project-Note-432 (2010).

  20. [20]

    D. Belohrad, J. Gras and M. Ludwig, The 2010 LHC ring Fast BCT measurement system and its main sources of uncertainties, CERN-LHC-Project-Note-433 (2010).

  21. [21]

    D. Belohrad et al., Commissioning and first performance of the LHC beam current measurement systems, in the proceedings of the 1st International Particle Accelerator Conference (IPAC10), May 23-28, Kyoto, Japan (2010).

  22. [22]

    G. Anders et al., LHC bunch current normalisation for the April-May 2010 luminosity calibration measurements, CERN-ATS-Note-2011-004 (2011).

  23. [23]

    G. Anders et al., LHC bunch current normalisation for the October 2010 luminosity calibration measurements, CERN-ATS-Note-2011-016 (2011).

  24. [24]

    C. Ohm and T. Pauly, The ATLAS beam pick-up based timing system, Nucl. Instrum. Meth. A 623 (2010) 558 [arXiv:0905.3648] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    M. Cacciari et al., Theoretical predictions for charm and bottom production at the LHC, JHEP 10 (2012) 137 [arXiv:1205.6344] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    ALICE collaboration, Inclusive J/ψ production in pp collisions at \(\sqrt{s}=2.76\) TeV, Phys. Lett. B 718 (2012) 295 [arXiv:1203.3641] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information