Journal of High Energy Physics

, 2013:18 | Cite as

Superpotential de-sequestering in string models

  • Marcus Berg
  • Joseph P. Conlon
  • David Marsh
  • Lukas T. Witkowski


Non-perturbative superpotential cross-couplings between visible sector matter and Kähler moduli can lead to significant flavour-changing neutral currents in compactifications of type IIB string theory. Here, we compute corrections to Yukawa couplings in orbifold models with chiral matter localised on D3-branes and non-perturbative effects on distant D7-branes. By evaluating a threshold correction to the D7-brane gauge coupling, we determine conditions under which the non-perturbative corrections to the Yukawa couplings appear. The flavour structure of the induced Yukawa coupling generically fails to be aligned with the tree-level flavour structure. We check our results by also evaluating a correlation function of two D7-brane gauginos and a D3-brane Yukawa coupling. Finally, by calculating a string amplitude between n hidden scalars and visible matter we show how non-vanishing vacuum expectation values of distant D7-brane scalars, if present, may correct visible Yukawa couplings with a flavour structure that differs from the tree-level flavour structure.


Supersymmetry Breaking Compactification and String Models Intersecting branes models Conformal Field Models in String Theory 


  1. [1]
    G. Aldazabal, L.E. Ibáñez, F. Quevedo and A. Uranga, D-branes at singularities: A Bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    H. Verlinde and M. Wijnholt, Building the standard model on a D3-brane, JHEP 01 (2007) 106 [hep-th/0508089] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    A. Anisimov, M. Dine, M. Graesser and S.D. Thomas, Brane world SUSY breaking, Phys. Rev. D 65 (2002) 105011 [hep-th/0111235] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    A. Anisimov, M. Dine, M. Graesser and S.D. Thomas, Brane world SUSY breaking from string/M theory, JHEP 03 (2002) 036 [hep-th/0201256] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Kachru, J. McGreevy and P. Svrček, Bounds on masses of bulk fields in string compactifications, JHEP 04 (2006) 023 [hep-th/0601111] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Kachru, L. McAllister and R. Sundrum, Sequestering in String Theory, JHEP 10 (2007) 013 [hep-th/0703105] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    M.A. Luty and R. Sundrum, Hierarchy stabilization in warped supersymmetry, Phys. Rev. D 64 (2001) 065012 [hep-th/0012158] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    M.A. Luty and R. Sundrum, Supersymmetry breaking and composite extra dimensions, Phys. Rev. D 65 (2002) 066004 [hep-th/0105137] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    M. Berg, D. Marsh, L. McAllister and E. Pajer, Sequestering in String Compactifications, JHEP 06 (2011) 134 [arXiv:1012.1858] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    S.A. Abel and M.D. Goodsell, Realistic Yukawa Couplings through Instantons in Intersecting Brane Worlds, JHEP 10 (2007) 034 [hep-th/0612110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    M. Buican and S. Franco, SUSY breaking mediation by D-brane instantons, JHEP 12 (2008) 030 [arXiv:0806.1964] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    M. Cvetič, J. Halverson and R. Richter, Realistic Yukawa structures from orientifold compactifications, JHEP 12 (2009) 063 [arXiv:0905.3379] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F. Marchesano and L. Martucci, Non-perturbative effects on seven-brane Yukawa couplings, Phys. Rev. Lett. 104 (2010) 231601 [arXiv:0910.5496] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].
  21. [21]
    F. Gmeiner and G. Honecker, Mapping an Island in the Landscape, JHEP 09 (2007) 128 [arXiv:0708.2285] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371 (2002) 1 [Erratum ibid. 376 (2003) 339] [hep-th/0204089] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  23. [23]
    M. Berg, M. Haack and J.U. Kang, One-Loop Kähler Metric of D-branes at Angles, JHEP 11 (2012) 091 [arXiv:1112.5156] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    E. Dudas, G. Pradisi, M. Nicolosi and A. Sagnotti, On tadpoles and vacuum redefinitions in string theory, Nucl. Phys. B 708 (2005) 3 [hep-th/0410101] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    P. Anastasopoulos, I. Antoniadis, K. Benakli, M. Goodsell and A. Vichi, One-loop adjoint masses for non-supersymmetric intersecting branes, JHEP 08 (2011) 120 [arXiv:1105.0591] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    D. Lüst, P. Mayr, R. Richter and S. Stieberger, Scattering of gauge, matter and moduli fields from intersecting branes, Nucl. Phys. B 696 (2004) 205 [hep-th/0404134] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to gauge coupling constants, Nucl. Phys. B 355 (1991) 649 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    M.R. Douglas, B.R. Greene and D.R. Morrison, Orbifold resolution by D-branes, Nucl. Phys. B 506 (1997) 84 [hep-th/9704151] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    E. Kiritsis, Introduction to superstring theory, hep-th/9709062 [INSPIRE].
  32. [32]
    I. Antoniadis, E. Kiritsis and J. Rizos, Anomalous U(1)s in type 1 superstring vacua, Nucl. Phys. B 637 (2002) 92 [hep-th/0204153] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    M. Berg, M. Haack and B. Körs, On the moduli dependence of nonperturbative superpotentials in brane inflation, hep-th/0409282 [INSPIRE].
  34. [34]
    J.P. Conlon, M. Goodsell and E. Palti, One-loop Yukawa Couplings in Local Models, JHEP 11 (2010) 087 [arXiv:1007.5145] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    M. Bianchi and A.V. Santini, String predictions for near future colliders from one-loop scattering amplitudes around D-brane worlds, JHEP 12 (2006) 010 [hep-th/0607224] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    M. Berg, M. Haack and B. Körs, Loop corrections to volume moduli and inflation in string theory, Phys. Rev. D 71 (2005) 026005 [hep-th/0404087] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, Cambridge, U.K. (1998).Google Scholar
  38. [38]
    D. Baumann et al., On D3-brane Potentials in Compactifications with Fluxes and Wrapped D-branes, JHEP 11 (2006) 031 [hep-th/0607050] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    I. Antoniadis and C. Bachas, Branes and the gauge hierarchy, Phys. Lett. B 450 (1999) 83 [hep-th/9812093] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    D. Baumann and L. McAllister, A Microscopic Limit on Gravitational Waves from D-brane Inflation, Phys. Rev. D 75 (2007) 123508 [hep-th/0610285] [INSPIRE].ADSGoogle Scholar
  41. [41]
    L. McAllister, An Inflaton mass problem in string inflation from threshold corrections to volume stabilization, JCAP 02 (2006) 010 [hep-th/0502001] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.P. Conlon, A. Maharana and F. Quevedo, Towards Realistic String Vacua, JHEP 05 (2009) 109 [arXiv:0810.5660] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    M.J. Dolan, S. Krippendorf and F. Quevedo, Towards a Systematic Construction of Realistic D-brane Models on a del Pezzo Singularity, JHEP 10 (2011) 024 [arXiv:1106.6039] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    J.P. Conlon and L.T. Witkowski, Scattering and Sequestering of Blow-Up Moduli in Local String Models, JHEP 12 (2011) 028 [arXiv:1109.4153] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    A. Maharana, Symmetry Breaking Bulk Effects in Local D-brane Models, JHEP 06 (2012) 002 [arXiv:1111.3047] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge, U.K. (1998).Google Scholar
  48. [48]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    J.J. Atick and A. Sen, Covariant one loop fermion emission amplitudes in closed string theories, Nucl. Phys. B 293 (1987) 317 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    J.J. Atick and A. Sen, Correlation functions of spin operators on a torus, Nucl. Phys. B 286 (1987) 189 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    J.J. Atick, L.J. Dixon and A. Sen, String Calculation of Fayet-Iliopoulos d Terms in Arbitrary Supersymmetric Compactifications, Nucl. Phys. B 292 (1987) 109 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    S. Abel and B. Schofield, One-loop Yukawas on intersecting branes, JHEP 06 (2005) 072 [hep-th/0412206] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    S.A. Abel and M.D. Goodsell, Intersecting brane worlds at one loop, JHEP 02 (2006) 049 [hep-th/0512072] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    K. Benakli and M. Goodsell, Two-Point Functions of Chiral Fields at One Loop in Type II, Nucl. Phys. B 805 (2008) 72 [arXiv:0805.1874] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    O. Schlotterer, Higher Loop Spin Field Correlators in D = 4 Superstring Theory, JHEP 09 (2010) 050 [arXiv:1001.3158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    M. Berg, M. Haack and E. Pajer, Jumping Through Loops: On Soft Terms from Large Volume Compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    J.P. Conlon, Gauge Threshold Corrections for Local String Models, JHEP 04 (2009) 059 [arXiv:0901.4350] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    J.P. Conlon and E. Palti, Gauge Threshold Corrections for Local Orientifolds, JHEP 09 (2009) 019 [arXiv:0906.1920] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Marcus Berg
    • 1
    • 2
  • Joseph P. Conlon
    • 3
  • David Marsh
    • 4
  • Lukas T. Witkowski
    • 3
  1. 1.Department of PhysicsKarlstad UniversityKarlstadSweden
  2. 2.Oskar Klein CenterStockholm University, Albanova University CenterStockholmSweden
  3. 3.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K
  4. 4.Department of PhysicsCornell UniversityIthacaU.S.A

Personalised recommendations