Journal of High Energy Physics

, 2012:134

Price for environmental neutrino-superluminality

Open Access
Article

Abstract

We ask whether the recent OPERA results on neutrino superluminality could be an environmental effect characteristic of the local neighborhood of our planet, without the need of violation of the Poincaré-invariance at a fundamental level. We show, that model-indepenently, such a possibility implies the existence of new gravitational degrees of freedom. Namely, this explanation requires the existence of a new spin-2 field of a planetary Compton wave-length that is coupled to neutrinos and the rest of the matter asymmetrically, both in the magnitude and in the sign. Sourced by the earth this field creates an effective metric on which neutrinos propagate superluminally, whereas other species are much less sensitive to the background. Such a setup, at an effective field theory level, passes all immediate phenomenological tests, but at the expense of sacrificing calculability for some of the phenomena that are under perturbative control in ordinary gravity. The natural prediction is an inevitable appearance of a testable long-range gravity-type fifth force. Despite phenomenological viability, the sign asymmetry of the coupling we identify as the main potential obstacle for a consistent UV-completion. We also discuss the possible identification of this field with a Kaluza-Klein state of an extra dimension in which neutrino can propagate.

Keywords

Beyond Standard Model Neutrino Physics Space-Time Symmetries 

References

  1. [1]
    OPERA collaboration, T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [INSPIRE].
  2. [2]
    G. Cacciapaglia, A. Deandrea and L. Panizzi, Superluminal neutrinos in long baseline experiments and SN1987a, JHEP 11 (2011) 137 [arXiv:1109.4980] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Amelino-Camelia et al., OPERA-reassessing data on the energy dependence of the speed of neutrinos, Int. J. Mod. Phys. D 20 (2011) 2623 [arXiv:1109.5172] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    A. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 (1972) 393 [INSPIRE].ADSGoogle Scholar
  5. [5]
    C. Talmadge, J. Berthias, R. Hellings and E. Standish, Model independent constraints on possible modifications of newtonian gravity, Phys. Rev. Lett. 61 (1988) 1159 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Dvali, G. Gabadadze, M. Kolanovic and F. Nitti, The power of brane induced gravity, Phys. Rev. D 64 (2001) 084004 [hep-ph/0102216] [INSPIRE].ADSGoogle Scholar
  7. [7]
    N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE].ADSGoogle Scholar
  8. [8]
    N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C.S. Gauthier, R. Saotome and R. Akhoury, Interaction of neutrinos with a cosmological K-essence scalar, JHEP 07 (2010) 062 [arXiv:0911.3168] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    E. Babichev, V. Mukhanov and A. Vikman, k-Essence, superluminal propagation, causality and emergent geometry, JHEP 02 (2008) 101 [arXiv:0708.0561] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    H. Pas, S. Pakvasa and T.J. Weiler, Sterile-active neutrino oscillations and shortcuts in the extra dimension, Phys. Rev. D 72 (2005) 095017 [hep-ph/0504096] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J. Dent, H. Pas, S. Pakvasa and T.J. Weiler, Neutrino time travel, arXiv:0710.2524 [INSPIRE].
  14. [14]
    S. Hollenberg, O. Micu, H. Pas and T.J. Weiler, Baseline-dependent neutrino oscillations with extra-dimensional shortcuts, Phys. Rev. D 80 (2009) 093005 [arXiv:0906.0150] [INSPIRE].ADSGoogle Scholar
  15. [15]
    E. Kiritsis, Supergravity, D-brane probes and thermal super Yang-Mills: a comparison, JHEP 10 (1999) 010 [hep-th/9906206] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    N. Arkani-Hamed, S. Dimopoulos, G. Dvali and J. March-Russell, Neutrino masses from large extra dimensions, Phys. Rev. D 65 (2002) 024032 [hep-ph/9811448] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    K.R. Dienes, E. Dudas and T. Gherghetta, Neutrino oscillations without neutrino masses or heavy mass scales: a higher dimensional seesaw mechanism, Nucl. Phys. B 557 (1999) 25 [hep-ph/9811428] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. Dvali and A.Y. Smirnov, Probing large extra dimensions with neutrinos, Nucl. Phys. B 563 (1999) 63 [hep-ph/9904211] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A.G. Cohen and S.L. Glashow, Pair creation constrains superluminal neutrino propagation, Phys. Rev. Lett. 107 (2011) 181803 [arXiv:1109.6562] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Cowsik, S. Nussinov and U. Sarkar, Superluminal neutrinos at OPERA confront pion decay kinematics, Phys. Rev. Lett. 107 (2011) 251801 [arXiv:1110.0241] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Theory Division, CERNGeneva 23Switzerland
  2. 2.Arnold Sommerfeld Center, Department für PhysikLudwig-Maximilians Universität MünchenMünchenGermany
  3. 3.Max-Plank-Institut für PhysikMünchenGermany
  4. 4.Center for Cosmology and Particle Physics, Department of PhysicsNew York UniversityNew YorkU.S.A.

Personalised recommendations