Journal of High Energy Physics

, 2012:130 | Cite as

Next-to-leading-order Monte Carlo simulation of diphoton production in hadronic collisions

Article

Abstract

We present a method, based on the positive weight next-to-leading-order matching formalism (POWHEG), to simulate photon production processes at next-to-leading-order (NLO). This technique is applied to the simulation of diphoton production in hadron-hadron collisions. The algorithm consistently combines the parton shower and NLO calculation, producing only positive weight events. The simulation includes both the photon fragmentation contribution and a full implementation of the truncated shower required to correctly describe soft emissions in an angular-ordered parton shower.

Keywords

QCD Phenomenology 

References

  1. [1]
    A. Buckley, J. Butterworth, S. Gieseke, D. Grellscheid, S. Hoche, et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    T. Sjöstrand and M. Bengtsson, The Lund Monte Carlo for jet fragmentation and e + e physics. JETSET version 6.3: an update, Comput. Phys. Commun. 43 (1987) 367 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Bengtsson and T. Sjöstrand, Parton showers in leptoproduction events, Z. Phys. C 37 (1988) 465 [INSPIRE].ADSGoogle Scholar
  4. [4]
    E. Norrbin and T. Sjöstrand, QCD radiation off heavy particles, Nucl. Phys. B 603 (2001) 297 [hep-ph/0010012] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G. Miu and T. Sjöstrand, W production in an improved parton shower approach, Phys. Lett. B 449 (1999) 313 [hep-ph/9812455] [INSPIRE].ADSGoogle Scholar
  6. [6]
    G. Corcella, I. Knowles, G. Marchesini, S. Moretti, K. Odagiri, et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Corcella, I. Knowles, G. Marchesini, S. Moretti, K. Odagiri, et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
  8. [8]
    M.H. Seymour, Photon radiation in final state parton showering, Z. Phys. C 56 (1992) 161 [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    M.H. Seymour, Matrix element corrections to parton shower simulation of deep inelastic scattering, talk contributed to the 27th International Conference on High Energy Physics (ICHEP), Glasgow Scotland, 20-27 July 1994.Google Scholar
  10. [10]
    G. Corcella and M. Seymour, Matrix element corrections to parton shower simulations of heavy quark decay, Phys. Lett. B 442 (1998) 417 [hep-ph/9809451] [INSPIRE].ADSGoogle Scholar
  11. [11]
    G. Corcella and M.H. Seymour, Initial state radiation in simulations of vector boson production at hadron colliders, Nucl. Phys. B 565 (2000) 227 [hep-ph/9908388] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M.H. Seymour, Matrix element corrections to parton shower algorithms, Comput. Phys. Commun. 90 (1995) 95 [hep-ph/9410414] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M.H. Seymour, A simple prescription for first order corrections to quark scattering and annihilation processes, Nucl. Phys. B 436 (1995) 443 [hep-ph/9410244] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Gieseke, A. Ribon, M.H. Seymour, P. Stephens and B. Webber, HERWIG++ 1.0: an event generator for e + e annihilation, JHEP 02 (2004) 005 [hep-ph/0311208] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Gieseke, The new Monte Carlo event generator HERWIG++, hep-ph/0408034 [INSPIRE].
  16. [16]
    K. Hamilton and P. Richardson, A simulation of QCD radiation in top quark decays, JHEP 02 (2007) 069 [hep-ph/0612236] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Gieseke, D. Grellscheid, K. Hamilton, A. Ribon, P. Richardson, et al., HERWIG++ 2.0 release note, hep-ph/0609306 [INSPIRE].
  18. [18]
    M. Bahr, S. Gieseke, M. Gigg, D. Grellscheid, K. Hamilton, et al., HERWIG++ 2.2 release note, arXiv:0804.3053 [INSPIRE].
  19. [19]
    S. Gieseke, D. Grellscheid, K. Hamilton, A. Papaefstathiou, S. Platzer, et al., HERWIG++ 2.5 release note, arXiv:1102.1672 [INSPIRE].
  20. [20]
    S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    A. Schalicke and F. Krauss, Implementing the ME+PS merging algorithm, JHEP 07 (2005) 018 [hep-ph/0503281] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. Krauss, A. Schalicke and G. Soff, APACIC++ 2.0: a parton cascade in C++, Comput. Phys. Commun. 174 (2006) 876 [hep-ph/0503087] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N. Lavesson and L. Lönnblad, W+jets matrix elements and the dipole cascade, JHEP 07 (2005) 054 [hep-ph/0503293] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Alwall, S. Hoche, F. Krauss, N. Lavesson, L. Lönnblad, et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    K. Hamilton, P. Richardson and J. Tully, A modified CKKW matrix element merging approach to angular-ordered parton showers, JHEP 11 (2009) 038 [arXiv:0905.3072] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Frixione, F. Stoeckli, P. Torrielli, B.R. Webber and C.D. White, The MCaNLO 4.0 event generator, arXiv:1010.0819 [INSPIRE].
  33. [33]
    S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Single-top production in MC@NLO, JHEP 03 (2006) 092 [hep-ph/0512250] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations, JHEP 04 (2007) 081 [hep-ph/0702198] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    O. Latunde-Dada, HERWIG Monte Carlo at next-to-leading order for e + e annihilation and lepton pair production, JHEP 11 (2007) 040 [arXiv:0708.4390] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    O. Latunde-Dada, MC and NLO for the hadronic decay of Higgs bosons in associated production with vector bosons, JHEP 05 (2009) 112 [arXiv:0903.4135] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Papaefstathiou and O. Latunde-Dada, NLO production of W ’ bosons at hadron colliders using the MC@NLO and POWHEG methods, JHEP 07 (2009) 044 [arXiv:0901.3685] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P. Torrielli and S. Frixione, Matching NLO QCD computations with PYTHIA using MC@NLO, JHEP 04 (2010) 110 [arXiv:1002.4293] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Frixione, F. Stoeckli, P. Torrielli and B.R. Webber, NLO QCD corrections in HERWIG++ with MC@NLO, JHEP 01 (2011) 053 [arXiv:1010.0568] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    O. Latunde-Dada, S. Gieseke and B. Webber, A positive-weight next-to-leading-order Monte Carlo for e + e annihilation to hadrons, JHEP 02 (2007) 051 [hep-ph/0612281] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation of Drell-Yan vector boson production, JHEP 10 (2008) 015 [arXiv:0806.0290] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation for Higgs boson production, JHEP 04 (2009) 116 [arXiv:0903.4345] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 1002 (2010)011] [arXiv:0907.4076] [INSPIRE].
  51. [51]
    S. Hoche, F. Krauss, M. Schonherr and F. Siegert, Automating the POWHEG method in SHERPA, JHEP 04 (2011) 024 [arXiv:1008.5399] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP 02 (2010) 037 [arXiv:0911.5299] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    E. Re, Single-top production with the POWHEG method, PoS DIS2010 (2010) 172 [arXiv:1007.0498] [INSPIRE].
  55. [55]
    E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE].ADSGoogle Scholar
  56. [56]
    S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081 [arXiv:1012.3380] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C. Oleari, The POWHEG-BOX, Nucl. Phys. Proc. Suppl. 205-206 (2010) 36 [arXiv:1007.3893] [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair production, JHEP 01 (2011) 009 [arXiv:1009.5391] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    C. Oleari and L. Reina, W +− \( b\overline b \) production in POWHEG, JHEP 08 (2011) 061 [Erratum ibid. 1111 (2011) 040] [arXiv:1105.4488] [INSPIRE].
  61. [61]
    A. Kardos, C. Papadopoulos and Z. Trócsányi, Top quark pair production in association with a jet with NLO parton showering, Phys. Lett. B 705 (2011) 76 [arXiv:1101.2672] [INSPIRE].ADSGoogle Scholar
  62. [62]
    T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W plus dijet production in the POWHEGBOX, Eur. Phys. J. C 71 (2011) 1670 [arXiv:1102.4846] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    N. Lavesson and L. Lönnblad, Extending CKKW-merging to one-loop matrix elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP 06 (2010) 039 [arXiv:1004.1764] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO matrix elements and truncated showers, JHEP 08 (2011) 123 [arXiv:1009.1127] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    H. Baer, J. Ohnemus and J. Owens, A next-to-leading logarithm calculation of direct photon production, Phys. Rev. D 42 (1990) 61 [INSPIRE].ADSGoogle Scholar
  67. [67]
    P. Aurenche, R. Baier and M. Fontannaz, Prompt photon production at colliders, Phys. Rev. D 42 (1990) 1440 [INSPIRE].ADSGoogle Scholar
  68. [68]
    E. Glover and A. Morgan, Measuring the photon fragmentation function at LEP, Z. Phys. C 62 (1994) 311 [INSPIRE].ADSGoogle Scholar
  69. [69]
    S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].ADSGoogle Scholar
  70. [70]
    S. Hoeche, S. Schumann and F. Siegert, Hard photon production and matrix-elementparton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [INSPIRE].ADSGoogle Scholar
  71. [71]
    D0 collaboration, V. Abazov et al., Search for resonant diphoton production with the D0 detector, Phys. Rev. Lett. 102 (2009) 231801 [arXiv:0901.1887] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment - Detector, trigger and physics, arXiv:0901.0512 [INSPIRE].
  73. [73]
    CMS collaboration, G. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [INSPIRE].ADSGoogle Scholar
  74. [74]
    S. Mrenna and J.D. Wells, Detecting a light Higgs boson at the Fermilab Tevatron through enhanced decays to photon pairs, Phys. Rev. D 63 (2001) 015006 [hep-ph/0001226] [INSPIRE].ADSGoogle Scholar
  75. [75]
    T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].MathSciNetADSGoogle Scholar
  76. [76]
    G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    WA70 collaboration, E. Bonvin et al., Intrinsic transverse momentum in the π p → γγX reaction at 280GeV/c, Phys. Lett. B 236 (1990) 523 [INSPIRE].ADSGoogle Scholar
  78. [78]
    WA70 collaboration, E. Bonvin et al., Double prompt photon production at high transverse momentum by π on protons at 280GeV/c, Z. Phys. C 41 (1989) 591 [INSPIRE].Google Scholar
  79. [79]
    E706 collaboration, M. Begel, Photons and diphotons from E706, Nucl. Phys. Proc. Suppl. 79 (1999) 244 [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    UA1 collaboration, C. Albajar et al., Direct photon production at the CERN proton - anti-Proton collider, Phys. Lett. B 209 (1988) 385 [INSPIRE].ADSGoogle Scholar
  81. [81]
    UA2 collaboration, J. Alitti et al., A measurement of single and double prompt photon production at the CERN \( \overline p p \) collider, Phys. Lett. B 288 (1992) 386 [INSPIRE].ADSGoogle Scholar
  82. [82]
    CDF collaboration, F. Abe et al., Measurement of the cross-section for production of two isolated prompt photons in \( \overline p p \) collisions at \( \sqrt {s} = 1.8 \) TeV, Phys. Rev. Lett. 70 (1993) 2232 [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    CDF collaboration, D. Acosta et al., Measurement of the cross section for prompt diphoton production in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 95 (2005) 022003 [hep-ex/0412050] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    The D0 collaboration, V. Abazov et al., Measurement of direct photon pair production cross sections in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 690 (2010) 108 [arXiv:1002.4917] [INSPIRE].ADSGoogle Scholar
  85. [85]
    E.L. Berger, E. Braaten and R. Field, Large p T production of single and double photons in proton proton and pion-proton collisions, Nucl. Phys. B 239 (1984) 52 [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    C. Llewellyn Smith, QCD predictions for processes involving real photons, Phys. Lett. B 79 (1978) 83 [INSPIRE].Google Scholar
  87. [87]
    P. Aurenche, R. Baier, M. Fontannaz and D. Schiff, Prompt photon production at large p T scheme invariant QCD predictions and comparison with experiment, Nucl. Phys. B 297 (1988) 661 [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    L. Gordon and W. Vogelsang, Polarized and unpolarized isolated prompt photon production beyond the leading order, Phys. Rev. D 50 (1994) 1901 [INSPIRE].ADSGoogle Scholar
  89. [89]
    P. Aurenche, A. Douiri, R. Baier, M. Fontannaz and D. Schiff, Large p T double photon production in hadronic collisions: beyond leading logarithm QCD calculation, Z. Phys. C 29 (1985) 459 [INSPIRE].ADSGoogle Scholar
  90. [90]
    B. Bailey, J. Owens and J. Ohnemus, An order α s Monte Carlo calculation of hadronic double photon production, Phys. Rev. D 46 (1992) 2018 [INSPIRE].ADSGoogle Scholar
  91. [91]
    V. Del Duca, F. Maltoni, Z. Nagy and Z. Trócsányi, QCD radiative corrections to prompt diphoton production in association with a jet at hadron colliders, JHEP 04 (2003) 059 [hep-ph/0303012] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    S. Catani, M. Fontannaz, J. Guillet and E. Pilon, Cross-section of isolated prompt photons in hadron hadron collisions, JHEP 05 (2002) 028 [hep-ph/0204023] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    T. Binoth, J. Guillet, E. Pilon and M. Werlen, A full next-to-leading order study of direct photon pair production in hadronic collisions, Eur. Phys. J. C 16 (2000) 311 [hep-ph/9911340] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].
  95. [95]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    M. Bahr, S. Gieseke, M. Gigg, D. Grellscheid, K. Hamilton, et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    L. Lönnblad, ThePEG, PYTHIA7, HERWIG++ and Ariadne, Nucl. Instrum. Meth. A 559 (2006) 246 [INSPIRE].ADSGoogle Scholar
  98. [98]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    W.-K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, Acta Phys. Polon. B 33 (2002) 2933 [hep-ph/0206114] [INSPIRE].MathSciNetADSGoogle Scholar
  100. [100]
    C. Balázs, E.L. Berger, S. Mrenna and C. Yuan, Photon pair production with soft gluon resummation in hadronic interactions, Phys. Rev. D 57 (1998) 6934 [hep-ph/9712471] [INSPIRE].ADSGoogle Scholar
  101. [101]
    C. Balázs, E.L. Berger, P.M. Nadolsky and C.-P. Yuan, Calculation of prompt diphoton production cross-sections at Tevatron and LHC energies, Phys. Rev. D 76 (2007) 013009 [arXiv:0704.0001] [INSPIRE].ADSGoogle Scholar
  102. [102]
    P.M. Nadolsky, C. Balázs, E.L. Berger and C.-P. Yuan, Gluon-gluon contributions to the production of continuum diphoton pairs at hadron colliders, Phys. Rev. D 76 (2007) 013008 [hep-ph/0702003] [INSPIRE].ADSGoogle Scholar
  103. [103]
    P.M. Nadolsky and C. Schmidt, Diphoton production in gluon fusion at small transverse momentum, Phys. Lett. B 558 (2003) 63 [hep-ph/0211398] [INSPIRE].ADSGoogle Scholar
  104. [104]
    C. Balázs, P.M. Nadolsky, C. Schmidt and C. Yuan, Diphoton background to Higgs boson production at the LHC with soft gluon effects, Phys. Lett. B 489 (2000) 157 [hep-ph/9905551] [INSPIRE].ADSGoogle Scholar
  105. [105]
    A. Buckley, J. Butterworth, L. Lönnblad, H. Hoeth, J. Monk, et al., Rivet user manual, arXiv:1003.0694 [INSPIRE].
  106. [106]
    C. Balázs, E.L. Berger, P.M. Nadolsky and C.-P. Yuan, All-orders resummation for diphoton production at hadron colliders, Phys. Lett. B 637 (2006) 235 [hep-ph/0603037] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, University of Karlsruhe, KITKarlsruheGermany
  2. 2.Institute of Particle Physics Phenomenology, Department of PhysicsUniversity of DurhamDurhamUK

Personalised recommendations